Open Quantum Safe update

and
Post-quantum TLS without handshake signatures

Douglas Stebila

VMware PQC Forum ¢ 2021-03-18

Hudson Bay

UNIVERSITY OF

WATERLOO Canada

Labrador Sea

ATC} | E JUN ND
N ABRAD(
(JE
H
M TA NB
MINNESOTA b
University of Waterloo
SOUTH WISCONSIN Research:oriented NOVA SCOTIA
AKOTA MICHIGAN public university
! 2 N YORK
i
: y Ch %ago
SK/
ILLINOIS e PENN
, United States NDIANA Moo edclelia
San Francisco ¢ JLORADO KANSAS YT WEST DE.
a VMISSOL ‘—]
v JCK) IR /

Olas Vegas oKL AT ENNESSE NORTH —0
Los Angeles RIZONA ARKANSAS o
e ZONA

San Diego MEu AL Dallas MISSISSIREL Ry
S o I

(‘:,/, Hou%ton CYB E R m

Institute for e Mexico SE(URITY g
Quantum AND PRIVACY —

CO m puti ng Mexico City Dominican
p Republic UNIVERSITY OF WATERLOO

Puerto Ric

Google

Ciatemala

Cryptography @ University of Waterloo

« UW involved in 4 NIST PQC Round 3 submissions:
* Finalists: CRYSTALS-Kyber, NTRU
* Alternates: FrodoKEM, SIKE

« UW involved in 4 NIST Lightweight Crypto Round 2 submissions: ACE, SPIX, SpoC,
WAGE

« Elliptic curves: David Jao, Alfred Menezes, (Scott Vanstone)

 Information theoretic cryptography: Doug Stinson

* Privacy-enhancing technologies: lan Goldberg

* Quantum cryptanalysis: Michele Mosca

« Quantum cryptography: Norbert Lutkenhaus, Thomas Jennewein, Debbie Leung

« Gord Agnew, Vijay Ganesh, Guang Gong, Sergey Gorbunov, Anwar Hasan, Florian
Kerschbaum

® ® B csec - NST Compater Se $

C 83 B nsLgow .o 5

= CSRC MENU

Quantum Threat Timeline

o]

COMPUTER SECURITY

Dr. Marco Piani, Senior Researcher Analyst, evolutionQ Inc. RISK

[N SETEINTRURTAE

Authors: Dr. Michele Mosca, co-founder; President and CEO, evolutionQ Inc. @ ESlcBA

RESOURCE CENTER

CSrC

Post-Quantum Cryptography

EXPERT OPINIONS ON THE
LIKELIHOOD OF A —
SIGNIFICANT QUANTUM

THREAT TO PUBLIC-KEY

CYBERSECURITY
AS FUNCTION OF TIME

<1% <5% <30% m~50% m>70% MWM>95% M>99%%

5 YEARS 12 8 2
BOVERRS a 8 5 Post-Quantum Cryptography Standardization
15 YEARS 3 8 7 2 2 Post-quantum candidate algorithm nominations are due November 30, 2017.
Call for Proposals
20 YEARS 2 10) 4 1
Call for Proposals Announcement
30 YEARS 5 8 3 6

NIST has initiated a process to solicit, evaluate, and standardize one or more quantum-resistant

public-key cryptographic algorithms. Currently, public-key cryptographic algorithms are specified in

Numbers reflect how many experts (out of 22) assigned a certain probability range.
FIPS 186-4, Digital Signature Standard, as well as special publications SP 800-56A Revision 2,

Recommendaation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography

and SP 800-56B Revision 1, Recommendation for Pair-Wise Key-Establishment Schemes Using Integer

https://globalriskinstitute.org/publications/quantum-threat-timeline/

https://globalriskinstitute.org/publications/quantum-threat-timeline/

https://openquantumsafe.orQ\ -quantum-safe

Open Quantum Safe Project

Use in applications

Integration into forks
of widely used open-
source projects

C language library,

common API

» x86/x64 (Linux,
Mac, Windows)

 ARM (Android,
Linux)

Apache : curl, Open]
httpd nginx links Chromium
Language

OpenSSL SDKs
SIMIME, TLS 1.3, X.509 BoringSSL C#, C++, Go,

OpenSSL 3 provider Java, Python,
Rust

key exchange / KEMs

. . lattice- multi-variate hash-based

signatures

https://openquantumsafe.org/ ¢ https://github.com/open-quantum-safe/

Industry partners:
Amazon Web
Services

* evolutionQ

* |IBM Research

* Microsoft Research

Additional contributors:
+ Cisco

* Senetas

+ PQClean project

* Individuals

Financial support:
AWS
Canadian Centre
for Cyber Security
NSERC
Unitary Fund

https://openquantumsafe.org/
https://github.com/open-quantum-safe/

libogs

*C library with common
API for post-quantum
signature schemes and
key encapsulation
mechanisms

*MIT License

* Builds on Windows,
macOS, Linux; x86 64,
ARM v8

https://openquantumsafe.org/liboqgs/

*\ersion 0.5.0 released
March 2021

*Includes all Round 3
finalists and alternate
candidates

* (except GeMSS)

* Some implementations
still Round 2 versions

https://openquantumsafe.org/liboqs/

TLS 1.3 implementations

OQS-OpenSSL | OQS-OpenSSL 3 | OQS-BoringSSL
111 provider

PQ key exchange in TLS 1.3

Hybrid key exchange in TLS 1.3 Yes Coming soon Yes
PQ certificates and signature authentication in TLS Yes No Yes
1.3
Hybrid certificates and signature authentication in TLS Yes No No
1.3

Using draft-ietf-tls-hybrid-design for hybrid key exchange

Interoperability test server running at https://test.openquantumsafe.org

https://openquantumsafe.org/applications/tls/

https://openquantumsafe.org/applications/tls/
https://test.openquantumsafe.org/

Applications

* Demonstrator
application integrations
Into:

* Apache

* NgIiNX

* haproxy

e curl

* Chromium

https://openquantumsafe.org/applications/tls/#demo-integrations

* In most cases required
few/no modifications to
work with updated
OpenSSL

 Runnable Docker images
available for download

https://openquantumsafe.org/applications/tls/

Benchmarking

*New benchmarking portal at
https://openguantumsafe.org/benchmarking/

* Core algorithm speed and memory usage
* TLS performance in ideal network conditions
*Intel AVX2 and ARM 64

https://openquantumsafe.org/benchmarking/

Part 2:
Post-quantum TLS
without handshake signatures

Peter Schwabe, Douglas Stebila, Thom Wiggers. In Proc. 27th ACM Conference on
Computer and Communications Security (CCS) 2020. ACM, November 2020.

https://eprint.iacr.orq/2020/534

11

https://eprint.iacr.org/2020/534

Authenticated key exchange

* Two parties establish a shared secret over a
public communication channel

Vast literature on AKE protocols

* Many security definitions capturing various adversarial
powers: BR, CK, eCK, ...

* Different types of authentication credentials: public key,
shared secret key, password, identity-based, ...

» Additional security goals: weak/strong forward secrecy,
key Cc_)tmpromlse Impersonation resistance, post-compromise
security, ...

» Additional protocol functionality: multi-stage, ratcheting, ...

* Group key exchange
* Real-world protocols: TLS, SSH, Signal, IKE, ISO, EMYV, ...

13

Explicit Implicit
authentication authentication
Alice receives Alice Is assured that
assurance that she only Bob would be

really iIs talking to Bob able to compute the
shared secret

Explicitly authenticated key exchange:

Signed Diffie—Hellman

Alice

(pka, ska) < SIG.KeyGen()
obtain pkp

X + ¢* X
Y, OB
o4 < SIG.Sign(ska, A||B|| X||Y) oA

k < H(sid,Y™)
application data

usi}lg authenticated encrypt'ion

Bob

(pkB, SkB) — SIG.KeyGen()
obtain pka

o + SIG.Sign(skp, A|B| X||Y)

k < H(sid, XY)

Implicitly authenticated key exchange:
Double-DH

Alice Bob
ska <+s{0,..., qg—1} skp <s{0,..., q—1}
pkA — gSkA pkB Y. gSkB
obtain pkp obtain pk4
x <+s{0,..., qg—1} y<+s4{0,..., q—1}
X < g° X Y « ¢Y
) Y
k <« H(sid, pkirt||Y™®) k < H(sid,| pkSF2 | XY)

application data

usi}lg authenticated encryptrion

TLS 1.3
handshake

Signed Diffie—Hellman

Client Server

static (sig): pkg, sks

TCP SYN R
) TCP SYN-ACK
X < Zqg 7
TR Zq
ss «— g*Y
K <« KDF(ss)

g¥, AEADk (cert[pkg]||Sig(sks, transcript)||key confirmation)

A

AEADg (key confirmation)

\

AEADg(application data)

Y

AEADg (application data)

A

TLS 1.3
handshake

Sianed Difie_Holl

Post-Quantum!!!

Client

TCP SYN

Server

static (sig) pkg, sks

»
o

TCP SYN-ACK

<
«

(ok gk o KM Lealien() gyl

(b se) = Yy

k)

KEM. L%f\oa[pszpﬁss*syx/y

K « KDF(ss)

cS
gy,/ AEADK (cert[pkg]||Sig(sks, transcript)||key confirmation)

tﬁzc&Q%

AEADg (key confirmation)

Y

AEADK» (application data)

Y

AEADg (application data)

A

18

post-quantum

PI‘Ohlem signatures

are big

Signature scheme Public key (bytes) Signature (bytes)

RSA-2048 Factoring 272 256
Elliptic curves Elliptic curve discrete logarithm 32 32
Dilithium Lattice-based (MLWE/MSIS) 1,184 2,044
Falcon Lattice-based (NTRU) 897 690
XMSS Hash-based 32 979

GeMSS Multi-variate 352,180 32

use

SOlution post-quantum KEMs
for authentication

Key encapsulation mechanisms (KEMs)

An abstraction of Diffie—Hellman key exchange

(pk, sk) + KEM.KeyGen()
pk

(ct, k) < KEM.Encaps(pk)
ct

k < KEM.Decaps(sk, ct)

Signature scheme Public key (bytes) Signature (bytes)

RSA-2048 Factoring 272 256
Elliptic curves Elliptic curve discrete logarithm 32 32
Dilithium Lattice-based (MLWE/MSIS) 1,184 2,044
Falcon Lattice-based (NTRU) 897 690
XMSS Hash-based 32 979
GeMSS Multi-variate 352,180 32
RSA-2048 Factoring 272 256
Elliptic curves Elliptic curve discrete logarithm 32 32
Kyber Lattice-based (MLWE) 800 768
NTRU Lattice-based (NTRU) 699 699
Saber Lattice-based (MLWR) 672 736
SIKE Isogeny-based 330 330

SIKE compressed Isogeny-based 197 197

Implicitly authenticated KEX is not new

In theory In practice
e DH-based: SKEME, . I?%A key transport in TLS <
MQV, HMQV, . Lacks fomard secrecy
- KEM-based: . SolgSI_aI_IE);\lszlge, Wireguard
BCGP09, FSXY12, ... - Different protocol flows
« OPTLS
» DH-based

* Requires a non-interactive key
exchange (NIKE)

“KEMTLS”
handshake

KEM for
ephemeral key exchange

KEM for
server-to-client
authenticated key exchange

Combine shared secrets

Client

Server

static (KEMs): pkg, skg

TCP SYN

<
<

TCP SYN-ACK

(pke, ske) < KEMe.Keygen()

pke

<
<%

»
L

(sse, cte) «— KEMe.Encapsulate(pk,)
Ki, K] < KDF(ss,)

cte, AEADK, (cert[pks])

sse < KEM¢.Decapsulate(cte, ske)
Kj, K{ < KDF(sse)
(sss, cts) « KEMs.Encapsulate pkg)

AEADK{ (Cts)

sss «— KEMg.Decapsulate(ctg, skg)
K2, K}, K}/, K} « KDF(ss¢[[s55)"

AEADk, (key confirmation), AEAD K, (application data)

Y

AEADg (key confirmation)

A

AEADk: (application data)

25

Algorithm choices

KEM for ephemeral

key exchange
IND-CCA (or IND-1CCA)

« Want small public key
+ small ciphertext

Signature scheme for
intermediate CA
« Want small public key
+ small signature

KEM for authenticated

key exchange
IND-CCA

« Want small public key
+ small ciphertext

Signature scheme for
root CA
* Want small signature

4 scenarios

1. Minimize size when intermediate certificate
transmitted

2. Minimize size when intermediate certificate
not transmitted (cached)

3. Use solely NTRU assumptions
4. Use solely module LWE/SIS assumptions

Signed KEX
versus
KEMTLS

Labels ABCD:

A = ephemeral KEM
B = leaf certificate

C = intermediate CA
D =root CA

Algorithms: (all level 1)
Dilithium,

ECDH X25519,
Falcon,

GeMSS,

Kyber,

NTRU,

RSA-2048,

SIKE,

XMSS’

Time until client received
encrypted application data (ms)

250

200

150

100

50

SSXG

min incl. int. CA cert.

SFXG

assumption: NTRU

m signed KEX

incl. int. CA cert.

e KEMTLS

incl. int. CA cert.

ERRR NFFF

—_— NNFFenm e =

RSA-2048 KKDD KDDD E

AL assumption: MLWE)
>
=~
>

2 4 6 8 10

Size of public key crypto objects transmitted (KB)

Rustls client/server with AVX2 implementations. Emulated network: latency 31.1 ms, bandwidth 1000 Mbps, 0% packet loss. Average of 100000 iterations.

28

Signed KEX
versus
KEMTLS

Labels ABCD:

A = ephemeral KEM
B = leaf certificate

C = intermediate CA
D =root CA

Algorithms: (all level 1)
Dilithium,

ECDH X25519,
Falcon,

GeMSS,

Kyber,

NTRU,

RSA-2048,

SIKE,

XMSS’

Time until client received
encrypted application data (ms)

250

200

150

100

50

SSGG SSXG

min incl. int. CA cert.

+ X25519

m signed KEX

incl. int. CA cert.

e KEMTLS

incl. int. CA cert.

min &cl. o signed KEX
int. .
e SFXG excl. int. CA cert.
o KEMTLS
SFGG excl. int. CA cert.
assumption: NTRU
ERRR NFFF _ NFFF
~.Om NNFF c& NNFFea—=¢ —
RSA-2048 KKDD KDDD KKDD KDDD

assumption: ML WE

1RTT 2RTT 3RTT

2 4

6

8 10

Size of public key crypto objects transmitted (KB)

Rustls client/server with AVX2 implementations. Emulated network: latency 31.1 ms, bandwidth 1000 Mbps, 0% packet loss. Average of 100000 iterations.

29

Observations

» Size-optimized KEMTLS requires < %2 communication of size-
optimized PQ signed-KEM

» Speed-optimized KEMTLS uses 90% fewer server CPU cycles
and still reduces communication
* NTRU KEX (27 us) 10x faster than Falcon signing (254 us)

* No extra round trips required until client starts sending
application data

« Smaller trusted code base (no signature generation on
client/server)

Security

Security model: multi- Ingredients in security proof:
stage key exchange, ‘ ll(\'ED“;ICCA for long-term

exten.dln.g [_DFC?SZH_ | * IND-1CCA for ephemeral
*Key indistinguishability KEM

e Forward Secrecy * Collision-resistant hash
o o function
*Implicit and explicit - Dual-PRF security of HKDF
authentication e EUF-CMA of HMAC

[DFGS21] Dowling, Fischlin, Gunther, Stebila. Journal of Cryptology, 2021. https://eprint.iacr.org/2020/1044

https://eprint.iacr.org/2020/1044

Security subtleties: authentication

Implicit authentication Explicit authentication

* Client’s first application flow . . ST
cant be road by sayone other * EXPplicit authentication

than intended server, but once key confirmation
client doesn’'t know server is -
live at the time of sending message transmitted
* Also provides a form of . : .
denia%le authentication since Retmac_tlve_ explicit _
no F'Slgnaltlure?f I_areduse_db_l_t authentication of earlier
* rormaily. ofrmine aenialll
[DGKO6] Y keys

[DGKO6] Di Raimondo, Gennaro, Krawczyk. ACM CCS 2006. https://eprint.iacr.org/2006/280

https://eprint.iacr.org/2006/280

Security subtleties: downgrade resilience

*Choice of cryptographic < Formally model 3 levels
algorithms not

authenticated at the time ~ ©f downgrade-resilience:

the client sends its first 1. Full downgrade
application flow resilience
° M'TM can't t_riCk client into 2 No downgrade
g%ggr;itﬁrr}(]jeswable resilience to
» But MITM can trick them unsupported algorithms
into temporarily using 3. No downgrade

suboptimal algorithm resilience

Security subtleties: forward secrecy

 Weak forward secrecy 1: . :
adversary passive in thye test Can make detailed
stage forward secrecy

* Weak forward secrecy 2: :
adversary passive in thye test statements, such as:
stage or never corrupted « Stage 1 and 2 keys are

peer's long-term key wfs1 when accepted,
* Forward secrecy: adversary .
passive in the test stage or retroactive fs once

didn’t corrupt peer’s long-term Stage o accepts
key before acceptance

Certificate lifecycle management for KEM

public keys

Proof of possession: How does requester prove possession of
corresponding secret keys?

* Not really addressed in practice, since RSA and DL/ECDL keys can
be used for both signing and encryption/KEX

» Can't sign like in a Certificate Signing Request (CSR)

* Could do interactive challenge-response protocol (or just run
KEMTLS), but need online verification (RFC 4210 Sect. 5.2.8.3)

« Send cert to requestor encrypted under key in the certificate (RFC
4210 Sect. 5.2.8.2) — but maybe broken by Certificate Transparency?

« Zero-knowledge proof of knowledge?

Thanks to Mike Ounsworth (Entrust Datacard) for raising some of these issues.
[1] https://mailarchive.ietf.org/arch/msg/spasm/FCCZv3Xi3rkbZyZWQnnMQMOEFYY/
[2] https://mailarchive.ietf.org/arch/msg/spasm/9tukY 1y TOzuNE8yHhuBLxzQWAKko/

https://mailarchive.ietf.org/arch/msg/spasm/FCCZv3Xi3rkbZyZWQnnMQM0EFYY/
https://mailarchive.ietf.org/arch/msg/spasm/9tukY1yTOzuNE8yHhuBLxzQWAko/

Certificate lifecycle management for KEM
public keys

Revocation: How can certificate owner authorize a
revocation request?

* Put a (hash of a) signature public key in the cert which can
be used to revoke the cert?

» Possibly could simplify to just revealing a hash preimage

Conclusions on KEMTLS

 Summary of protocol design: implicit authentication via
KEMs

» Saves bytes on the wire and server CPU cycles
* Preserves client request after 1-RTT
» Caching intermediate CA certs brings even greater benefits

* Protocol design is simple to implement, provably secure
* Also have a variant supporting client authentication
* Working with Cloudflare to test within their infrastructure

Open Quantum Safe update

and

Post-quantum TLS without handshake signatures

KEMTLS Open Quantum Safe project
Implicitly authenticated TLS Open-source software for
without handshake prototyping and experimenting
signatures using KEMs with PQ crypto, including in TLS
https://eprint.iacr.org/2020/534 https://openquantumsafe.org/
https://github.com/thomwiggers/kemtls-experiment/ https://github.com/open-quantum-safe/

https://www.douglas.stebila.ca/research/presentations/ 38

https://www.douglas.stebila.ca/research/presentations/
https://eprint.iacr.org/2020/534
https://github.com/thomwiggers/kemtls-experiment/
https://openquantumsafe.org/
https://github.com/open-quantum-safe/

