Post-quantum key exchange for the Internet

Douglas Stebila McMaster University

Acknowledgements

Collaborators

- Joppe Bos
- Craig Costello and Michael Naehrig
- Léo Ducas
- Ilya Mironov and Ananth Raghunathan
- Michele Mosca
- Valeria Nikolaenko

University

Support

- Australian Research Council (ARC)
- Natural Sciences and Engineering Research Council of Canada (NSERC)
- Queensland University of Technology
- Tutte Institute for Mathematics and Computing

Motivation

Contemporary cryptography

TLS-ECDHE-RSA-AES128-GCM-SHA256

Building quantum computers

Building quantum computers

Devoret, Schoelkopf. Science 339:1169-1174, March 2013.

When will a large-scale quantum computer be built?

"I estimate a $1 / 7$ chance of breaking RSA-2048 by 2026 and a $1 / 2$ chance by 2031."

— Michele Mosca, November 2015 https://eprint.iacr.org/2015/1075

Post-quantum cryptography in academia

Conference series

- PQCrypto 2006
- PQCrypto 2008
- PQCrypto 2010
- PQCrypto 2011
- PQCrypto 2013
- PQCrypto 2014
- PQCrypto 2016

Post-quantum cryptography in government

"IAD will initiate a transition to quantum resistant algorithms in the not too distant future."

> - NSA Information Assurance Directorate, Aug. 2015

NIST Post-quantum Crypto Project timeline

September 16, 2016 Feedback on call for proposals

Fall 2016
November 2017
Early 2018
3-5 years
2 years later

Formal call for proposals
Deadline for submissions
Workshop - submitters' presentations
Analysis phase
Draft standards ready

Post-quantum / quantum-safe crypto

No known exponential quantum speedup

Lots of questions

Design better post-quantum key exchange and signature schemes

Improve classical and quantum attacks

Pick parameter sizes

Develop fast, secure implementations

Integrate them into the existing infrastructure

This talk

- Two key exchange protocols from lattice-based problems
- BCNS15: key exchange from the ring learning with errors problem
- Frodo: key exchange from the learning with errors problem
- Open Quantum Safe project
- A library for comparing post-quantum primitives
- Framework for easing integration into applications like OpenSSL

Why key exchange?

Premise: large-scale quantum computers don't exist right now, but we want to protect today's communications against tomorrow's adversary.

- Signatures still done with traditional primitives (RSA/ECDSA)
- we only need authentication to be secure now
- benefit: use existing RSA-based PKI
- Key agreement done with ring-LWE, LWE, ...
- Also consider "hybrid" ciphersuites that use post-quantum and traditional elliptic curve

Learning with errors problems

Solving systems of linear equations

Linear system problem: given blue, find red

Solving systems of linear equations

$\mathbb{Z}_{13}^{7 \times 4}$				$\begin{aligned} & \text { secret } \\ & \mathbb{Z}_{13}^{4 \times 1} \end{aligned}$	$\mathbb{Z}_{13}^{7 \times 1}$
4	1	11	10	6	4
5	5	9	5	9	8
3	9	0	10	11	1
1	3	3	2		10
12	7	3	4	Easily solved	4
6	5	11	4	Gaussian Algebra 101)	12
3	3	5	0		9

Linear system problem: given blue, find red

Learning with errors problem

random $\mathbb{Z}_{13}^{7 \times 4}$			
4	1	11	10
5	5	9	5
3	9	0	10
1	3	3	2
12	7	3	4
6	5	11	4
3	3	5	0

secret
 small noise

$\mathbb{Z}_{13}^{4 \times 1}$

6
9
11
11

$$
\mathbb{Z}_{13}^{7 \times 1}
$$

$\mathbb{Z}_{13}^{7 \times}$

0
-1
1
1
1
0
-1
:---:
:---:
11
5
12
8

Learning with errors problem

random \mathbb{Z} 13			
4 1 11 10 5 5 9 5 3 9 0 10 1 3 3 2 12 7 3 4 6 5 11 4 3 3 5 0			

Computational LWE problem: given blue, find red

Decision learning with errors problem

random $\mathbb{Z}_{13}^{7 \times 4}$			
4	1	11	10
5	5	9	5
3	9	0	10
1	3	3	2
12	7	3	4
6	5	11	4
3	3	5	0

small noise
$\mathbb{Z}_{13}^{7 \times 1}$
$\mathbb{Z}_{13}^{7 \times 1}$

$=$| 4 |
| :---: |
| 7 |
| 2 |
| 11 |
| 5 |
| 12 |
| 8 |

Decision LWE problem: given blue, distinguish green from random

Toy example versus real-world example

$\mathbb{Z}_{13}^{7 \times 4}$			
4	1	11	10
5	5	9	5
3	9	0	10
1	3	3	2
12	7	3	4
6	5	11	4
3	3	5	0

Ring learning with errors problem

	$\begin{aligned} \text { rand } \\ \mathbb{Z}_{1}^{7} \end{aligned}$	${ }_{3}^{\text {dom }}$		Each row is the cyclic shift of the row above
4	1	11	10	
10	4	1	11	
11	10	4	1	
1	11	10	4	
4	1	11	10	
10	4	1	11	
11	10	4	1	

Ring learning with errors problem

random
7×4
\mathbb{Z}_{13}

4	1	11	10
3	4	1	11
2	3	4	1
12	2	3	4
9	12	2	3
10	9	12	2
11	10	9	12

Each row is the cyclic shift of the row above
with a special wrapping rule:
x wraps to $-x$ mod 13 .

Ring learning with errors problem

random

$\mathbb{T}^{7 \times 4}$
\mathbb{Z}_{13}

| 4 | 1 | 11 | 10 | Each row is the cyclic |
| :--- | :--- | :--- | :--- | :--- | shift of the row above

with a special wrapping rule:
x wraps to $-x$ mod 13 .
So I only need to tell you the first row.

Ring learning with errors problem

$$
\begin{array}{l|ll}
& & \begin{array}{l}
\left.\mathbb{Z}_{13}[x] / / x^{4}+1\right\rangle \\
\\
\times
\end{array} \\
\times+1 x+11 x^{2}+10 x^{3} & \text { random } \\
+ & 0-1 x+11 x^{2}+11 x^{3} & \text { secret } \\
\hline= & 10+5 x+10 x^{2}+7 x^{3} & \text { small noise } \\
\hline=
\end{array}
$$

Ring learning with errors problem

Computational ring-LWE problem: given blue, find red

Decision ring learning with errors problem

$$
\mathbb{Z}_{13}[x] /\left\langle x^{4}+1\right\rangle
$$

$4+1 x+11 x^{2}+10 x^{3} \quad$ random

$=10+5 x+10 x^{2}+7 x^{3} \quad$ looks random

Decision ring-LWE problem: given blue, distinguish green from random

Decision ring learning with errors problem with small secrets

$$
\mathbb{Z}_{13}[x] /\left\langle x^{4}+1\right\rangle
$$

Decision ring-LWE problem: given blue, distinguish green from random

Problems

Computational
 LWE problem

Decision

LWE problem

with or without short secrets

Computational ring-LWE problem

Decision ring-LWE problem

Key agreement from ring-LWE

Bos, Costello, Naehrig, Stebila.
Post-quantum key exchange for the TLS protocol from the ring learning with errors problem. IEEE Symposium on Security \& Privacy (S\&P) 2015.
https://www.douglas.stebila.ca/research/papers/SP-BCNS15/

Decision ring learning with errors problem with short secrets

Definition. Let n be a power of $2, q$ be a prime, and $R_{q}=\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$ be the ring of polynomials in X with integer coefficients modulo q and polynomial reduction modulo $X^{n}+1$. Let χ be a distribution over R_{q}.
Let $s \stackrel{\$}{\leftarrow} \chi$.
Define:

- $O_{\chi, s}$: Sample $a \stackrel{\$}{\leftarrow} \mathcal{U}\left(R_{q}\right), e \stackrel{\$}{\leftarrow} \chi ;$ return $(a, a s+e)$.
- U : Sample $\left(a, b^{\prime}\right) \stackrel{\&}{\leftarrow} \mathcal{U}\left(R_{q} \times R_{q}\right) ;$ return $\left(a, b^{\prime}\right)$.

The decision $R-L W E$ problem with short secrets for n, q, χ is to distinguish $O_{\chi, s}$ from U.

Hardness of decision ring-LWE

Practice:

- Assume the best way to solve DRLWE is to solve LWE.
- Assume solving LWE involves a lattice reduction problem.
- Estimate parameters based on runtime of lattice reduction algorithms e.g. [APS15]
- (Ignore non-tightness.) [CKMS16]

Basic ring-LWE-DH key agreement (unauthenticated)

- Reformulation of Peikert's ring-LWE KEM (PQCrypto 2014)
public: "big" a in $R_{q}=\mathbf{Z}_{q}[x] /\left(x^{n}+1\right)$

Alice

secret:
random "small" s, e in R_{q}

Bob

```
secret:
```

random "small" s', e' in R_{q}

$$
b=a \cdot s+e
$$

$$
b^{\prime}=a \cdot s^{\prime}+e^{\prime}
$$

shared secret:
$s \cdot b^{\prime}=s \cdot\left(a \cdot s^{\prime} \cdot e^{\prime}\right) \approx s \cdot a \cdot s^{\prime}$

These are only approximately equal \Rightarrow need rounding

Rounding

- Each coefficient of the polynomial is an integer modulo q
- Treat each coefficient independently

Basic rounding

- Round either to 0 or $q / 2$
- Treat $q / 2$ as 1

This works most of the time: prob. failure 2^{-10}.

Not good enough: we need exact key agreement.

Better rounding (Peikert)

Bob says which of two regions the value is in: or

Better rounding (Peikert)

- If \mid alice - bob $\mid \leq q / 8$, then this always works.

- For our parameters, probability | alice $-b o b \mid>q / 8$ is less than 2-128000.
- Security not affected: revealing or leaks no information

Exact ring-LWE-DH key agreement (unauthenticated)

- Reformulation of Peikert's R-LWE KEM (PQCrypto 2014)
public: "big" a in $R_{q}=\mathbf{Z}_{q}[x] /\left(x^{n}+1\right)$

Alice
secret:
random "small" s, e in R_{q}

Bob

```
secret:
```

random "small" s', e' in R_{q}

$$
b=a \cdot s+e
$$

shared secret: round($s \cdot b^{\prime}$)
shared secret: round ($b \cdot s^{\prime}$)

Ring-LWE-DH key agreement

Public parameters

Decision R-LWE parameters q, n, χ
$a \stackrel{\&}{\leftarrow} \mathcal{U}\left(R_{q}\right)$

Secure if

 decision ring learning with errors problem is hard.
Parameters

160-bit classical security, 80-bit quantum security

- $n=1024$
- $q=2^{32}-1$
- $\chi=$ discrete Gaussian with parameter sigma $=8 /$ sqrt(2π)
- Failure: 2^{-12800}
- Total communication: 8.1 KiB

Implementation aspect 1:

Polynomial arithmetic

- Polynomial multiplication in $R_{q}=\mathbf{Z}_{q}[x] /\left(x^{1024}+1\right)$ done with Nussbaumer's FFT:

If $2^{m}=r k$, then

$$
\frac{R[X]}{\left\langle X^{2^{m}}+1\right\rangle} \cong \frac{\left(\frac{R[Z]}{\left\langle Z^{r}+1\right\rangle}\right)[X]}{\left\langle X^{k}-Z\right\rangle}
$$

- Rather than working modulo degree-1024 polynomial with coefficients in \mathbf{Z}_{q}, work modulo:
- degree-256 polynomial whose coefficients are themselves polynomials modulo a degree-4 polynomial,
- or degree-32 polynomials whose coefficients are polynomials modulo degree-8 polynomials whose coefficients are polynomials

[^0]Implementation aspect 2:

Sampling discrete Gaussians

- Security proofs require "small" elements sampled within statistical distance 2^{-128} of the true discrete Gaussian
- We use inversion sampling: precompute table of cumulative probabilities
- For us: 52 elements, size $=10000$ bits
- Sampling each coefficient requires six 192-bit integer comparisons and there are 1024 coefficients
-51•1024 for constant time

Sampling is expensive

Operation

Cycles

constant-time non-constant-time

sample $\stackrel{\&}{\leftarrow} \chi$	1042700	668000
FFT multiplication	342800	-
FFT addition	1660	-
dbl (\cdot) and crossrounding $\langle\cdot\rangle_{2 q, 2}$	23500	21300
rounding $\langle\cdot\rangle_{2 q, 2}$	5500	3,700
reconciliation $\operatorname{rec}(\cdot, \cdot)$	14400	6800

"NewHope"

Alkim, Ducas, Pöppelman, Scwabe.
USENIX Security 2016

- New parameters
- Different error distribution
- Improved performance
- Pseudorandomly generated parameters
- Further performance improvements by others [GS16,LN16,...]

Google Security Blog

Experimenting with Post-Quantum Cryptography July 7, 2016

```
\\ [.] Elements Console Sources Network Timeline Profiles Application Security Audits
```

Main Origin

- https://play.google.com Secure Origins
- https://www.gstatic.com
- https://lh3.googleuserconte
- https://h4.googleuserconte - https://lh5.googleusercontt - https:///h6.googleuserconte https://h3.ggpht.com - https:///h4.ggpht.com - https://h5.ggpht.com - https://books.google.com - https://ajax.googleapis.com https://www.google.com - https://www.google-analyti -
- https://play.google.com View requests in Network Panel

Connection

$$
\begin{aligned}
& \text { Protocol } \begin{array}{l}
\text { TLS } 1.2 \\
\text { Key Exchange } \\
\text { CECPPQ1_ECDSA } \\
\text { Cipher Suite }
\end{array} \text { AES_256_GCM }
\end{aligned}
$$

Certificate
Subject *.google.com
SAN *.google.com
*.android.com
Show more (52 total)
Valid From Thu, 23 Jun 2016 08:33:56 GMT
Valid Until Thu, 15 Sep 2016 08:31:00 GMT
Issuer Google Internet Authority G2

Key agreement from LWE

Bos, Costello, Ducas, Mironov, Naehrig, Nikolaenko, Raghunathan, Stebila. Frodo: Take off the ring! Practical, quantum-safe key exchange from LWE. ACM Conference on Computer and Communications Security (CCS) 2016.
https://eprint.iacr.org/2016/659

Decision learning with errors problem with short secrets

Definition. Let $n, q \in \mathbb{N}$. Let χ be a distribution over \mathbb{Z}. Let $\mathbf{s} \stackrel{\$}{\leftarrow} \chi^{n}$.

Define:

- $O_{\chi, \mathbf{s}}$: Sample $\mathbf{a} \stackrel{\$}{\leftarrow} \mathcal{U}\left(\mathbb{Z}_{q}^{n}\right), e \stackrel{\$}{\leftarrow} \chi ;$ return $(\mathbf{a}, \mathbf{a} \cdot \mathbf{s}+e)$.
- U : Sample $\left(\mathbf{a}, b^{\prime}\right) \stackrel{\$}{\leftarrow} \mathcal{U}\left(\mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q}\right) ;$ return $\left(\mathbf{a}, b^{\prime}\right)$.

The decision LWE problem with short secrets for n, q, χ is to distinguish $O_{\chi, \mathrm{s}}$ from U.

Hardness of decision LWE

worst-case gap shortest vector problem (GapSVP)
poly-time [BLPRS13]

decision LWE

tight [ACPS09]
decision LWE
with short secrets

Practice:

- Assume the best way to solve DLWE is to solve LWE.
- Assume solving LWE involves a lattice reduction problem.
- Estimate parameters based on runtime of lattice reduction algorithms.
- (Ignore non-tightness.)

Generic vs. ideal lattices

- Ring-LWE matrices have additional structure
- Relies on hardness of a problem in ideal lattices
- LWE matrices have no additional structure
- Relies on hardness of a problem in generic lattices
- NTRU also relies on a problem in a type of ideal lattices
- Currently, best algorithms for ideal lattice problems are essentially the same as for generic lattices
- Small constant factor improvement in some cases
- If we want to eliminate this additional structure, can we still get an efficient algorithm?

"Frodo": LWE-DH key agreement

$\operatorname{seed}_{\mathbf{A}} \frac{\text { Alice }}{\stackrel{\$}{\leftarrow} U\left(\{0,1\}^{s}\right)}$
$\mathbf{A} \leftarrow \operatorname{Gen}\left(\operatorname{seed}_{\mathbf{A}}\right)$

$$
\in \xrightarrow[\{0,1\}^{s} \times \mathbb{Z}_{q}^{n} \times \bar{n}]{\text { seed }_{\mathbf{A}}, \mathbf{B}}
$$

$$
\left.K \leftarrow \mathrm{rec} \mathbf{B}^{\prime} \mathbf{S}, \mathbf{C}\right)
$$

Uses two matrix forms of LWE:

- Public key is $n \times \underline{n}$ matrix
- Shared secret is $\underline{m} \times \underline{n}$ matrix

Bob

A generated pseudorandomly

$$
\mathbf{A} \leftarrow \operatorname{Gen}\left(\operatorname{seed}_{\mathbf{A}}\right)
$$

$$
\in \frac{\mathbf{B}^{\prime}, \mathbf{C}}{\mathbb{Z}_{q}^{\frac{m}{m} \times n} \times \mathbb{Z}_{2}^{\bar{m}} \times \bar{n}}
$$

$$
\begin{gathered}
\mathbf{S}^{\prime}, \mathbf{E}^{\prime} \stackrel{\$}{\leftarrow}\left(\mathbb{Z}_{m}^{\bar{m}} \times n\right. \\
\mathbf{B}^{\prime} \leftarrow \mathbf{S}^{\prime} \mathbf{A}+\mathbf{E}^{\prime} \\
\mathbf{E}^{\prime \prime} \stackrel{\$}{\leftarrow} \chi\left(\mathbb{Z}_{q}^{\bar{m}} \times \bar{n}\right) \\
\mathbf{V} \leftarrow \mathbf{S}^{\prime} \mathbf{B}+\mathbf{E}^{\prime \prime} \\
\hline \mathbf{C} \leftarrow\langle\mathbf{V}\rangle_{2^{B}}
\end{gathered}
$$

$$
K \leftarrow\lfloor\mathbf{V}\rceil_{2^{B}}
$$

Secure if

 decision learning with errors problem is hard
Rounding

Error distribution

- We extract 4 bits from each of the 64 matrix entries in the shared secret.
- More granular form of Peikert's rounding.

- Close to discrete Gaussian in terms of Rényi divergence (1.000301)
- Only requires 12 bits of randomness to sample

Parameters

All known variants of the sieving algorithm require a list of vectors to be created of this size

"Recommended"

- 156-bit classical security, 142-bit quantum security, 112-bit plausible lower bound
- $n=752, m=8, q=2^{15}$
- $\chi=$ approximation to rounded Gaussian with 11 elements
- Failure: 2-36.5
- Total communication: 22.6 KiB

"Paranoid"

- 191-bit classical security, 174-bit quantum security, 138-bit plausible lower bound
- $n=864, m=8, q=2^{15}$
- $\chi=$ approximation to rounded Gaussian with 13 elements
- Failure: $2^{-35.8}$
- Total communication: 25.9 KiB

Standalone performance

Implementations

Our implementations

- BCNS15
- Frodo

Pure C implementations
Constant time

Compare with others

- RSA 3072-bit (OpenSSL 1.0.1f)
- ECDH nistp256 (OpenSSL)

Use assembly code

- NewHope
- NTRU EES743EP1
- SIDH (Isogenies) (MSR)

Pure C implementations

Standalone performance

Scheme	Alice0	Bob	Alice1	Communication (bytes)		Claimed security	
	(ms)	(ms)	(ms)	$\mathbf{A \rightarrow \mathbf { B }}$	$\mathbf{B} \rightarrow \mathbf{A}$	classical	quantum
RSA 3072-bit	-	0.09	4.49	$387 / 0^{*}$	384	128	-
ECDH nistp256	0.366	0.698	0.331	32	32	128	-
BCNS	1.01	1.59	0.174	4,096	4,224	163	76
NewHope	0.112	0.164	0.034	1,824	2,048	229	206
NTRU EES743EP1	2.00	0.281	0.148	1,027	1,022	256	128
SIDH	135	464	301	564	564	192	128
Frodo Recomm.	$\mathbf{1 . 1 3}$	$\mathbf{1 . 3 4}$	$\mathbf{0 . 1 3}$	$\mathbf{1 1 , 3 7 7}$	$\mathbf{1 1 , 2 9 6}$	$\mathbf{1 5 6}$	$\mathbf{1 4 2}$
Frodo Paranoid	1.25	1.64	0.15	13,057	12,976	191	174

Standalone performance

RSA 3072-bit	Fast $(4 \mathrm{~ms})$	Small $(0.3 \mathrm{KiB})$
ECDH nistp256	Very fast $(0.7 \mathrm{~ms})$	Very small $(0.03 \mathrm{KiB})$
BCNS	Fast $(1.5 \mathrm{~ms})$	Medium $(4 \mathrm{KiB})$
NewHope	Very fast $(0.2 \mathrm{~ms})$	Medium $(2 \mathrm{KiB})$
NTRU EES743EP1	Fast $(0.3-1.2 \mathrm{~ms})$	Medium $(1 \mathrm{KiB})$
SIDH	Very slow $(400 \mathrm{~ms})$	Small $(0.5 \mathrm{KiB})$
Frodo Recommended	Fast $(1.4 \mathrm{~ms})$	Large $(11 \mathrm{KiB})$
McBits*	Very fast $(0.5 \mathrm{~ms})$	Very large $(360 \mathrm{KiB})$

TLS integration and performance

Integration into TLS 1.2

New ciphersuite:

TLS-KEX-SIG-AES256-GCM-
SHA384

- SIG = RSA or ECDSA signatures for authentication
- KEX = Post-quantum key exchange
- AES-256 in GCM for authenticated encryption
- SHA-384 for HMAC-KDF
\qquad
ServerHello
Certificate

Certificate*
ClientKeyExchange
CertificateVerify*
[ChangeCipherSpec]

application data

Security within TLS 1.2

Model:

- authenticated and confidential channel establishment (ACCE) [JKSS12]

Theorem:

- signed LWE/ring-LWE ciphersuite is ACCE-secure if underlying primitives (signatures, LWE/ring-LWE, authenticated encryption) are secure
- Interesting technical detail for ACCE provable security people: need to move server's signature to end of TLS handshake because oracle-DH assumptions don't hold for ringLWE or use an IND-CCA KEM for key exchange via e.g. [FO99]

TLS performance

Handshake latency

- Time from when client sends first TCP packet till client receives first application data
- No load on server

Connection throughput

- Number of connections per second at server before server latency spikes

TLS handshake latency compared to NewHope-ECDSA

TLS connection throughput ECDSA signatures

bigger (top) is better

Hybrid ciphersuites

- Use both post-quantum key exchange and traditional key exchange
- Example:
- ECDHE + NewHope
- Used in Google Chrome experiment
- ECDHE + Frodo
- Session key secure if either problem is hard
-Why use post-quantum?
- (Potential) security against future quantum computer
-Why use ECDHE?
- Security not lost against existing adversaries if post-quantum cryptanalysis advances

TLS connection throughput - hybrid w/ECDHE

 ECDSA signaturesbigger (top) is better

Open Quantum Safe

Collaboration with Mosca et al., University of Waterloo
https://github.com/open-quantum-safe/

Open Quantum Safe

- Open source C library
- Common interface for key exchange and digital signatures

1. Collect post-quantum implementations together

- Our own software
- Thin wrappers around existing open source implementations
- Contributions from others

2. Enable direct comparison of implementations
3. Support prototype integration into application level protocols

- Don't need to re-do integration for each new primitive - how we did Frodo experiments

Open Quantum Safe architecture

Getting involved and using OQS

https://github.com/open-quantum-safe/

If you're writing post-quantum implementations:

- We'd love to coordinate on API
- And include your software if you agree

If you want to prototype or evaluate post-quantum algorithms in applications:

- Maybe OQS will be helpful to you

We'd love help with:

- Code review and static analysis
- Signature scheme implementations
- Additional application-level integrations

Summary

Summary

- Exciting research area - lots of opportunities!
- Ring-LWE is fast and fairly small
- LWE can achieve reasonable key sizes
- Hybrid ciphersuites will probably play a role in the transition
- Performance differences are muted in application-level protocols
- Parameter sizes and efficiency likely to evolve
- Post-quantum key exchange soon to be in demand

Now hiring!

- Post-doc in any area of post-quantum cryptography
- Applied or theoretical
- Deadline: August 25, 2016

For more info:
https://www.douglas.stebila.ca/research/postdoc/

Links

Ring-LWE key exchange

- https://eprint.iacr.org/2014/599
- https://github.com/dstebila/rlwekex

LWE key exchange (Frodo)

- https://eprint.iacr.org/2016/659
- https://github.com/lwe-frodo/ (coming soon)

Open Quantum Safe

- https://github.com/open-quantumsafel

Post-doc

- https://www.douglas.stebila.ca /research/postdoc/

[^0]: - or ...

