# Post-quantum key exchange for the Internet



Selected Areas in Cryptography • August 12, 2016

# Acknowledgements

#### **Collaborators**

- Joppe Bos
- Craig Costello and Michael Naehrig
- Léo Ducas
- Ilya Mironov and Ananth Raghunathan
- Michele Mosca
- Valeria Nikolaenko



#### <u>Support</u>

- Australian Research Council (ARC)
- Natural Sciences and Engineering Research Council of Canada (NSERC)
- Queensland University of Technology
- Tutte Institute for Mathematics and Computing









# Motivation

#### Contemporary cryptography TLS-ECDHE-RSA-AES128-GCM-SHA256



#### Building quantum computers



Devoret, Schoelkopf. Science 339:1169–1174, March 2013.

## Building quantum computers



Devoret, Schoelkopf. Science 339:1169–1174, March 2013.

When will a large-scale quantum computer be built?

"I estimate a 1/7 chance of breaking RSA-2048 by 2026 and a 1/2 chance by 2031."

> Michele Mosca, November 2015 https://eprint.iacr.org/2015/1075

## Post-quantum cryptography in academia

#### Conference series

- PQCrypto 2006
- PQCrypto 2008
- PQCrypto 2010
- PQCrypto 2011
- PQCrypto 2013
- PQCrypto 2014
- PQCrypto 2016



## Post-quantum cryptography in government



Aug. 2015 (Jan. 2016)

"IAD will initiate a transition to quantum resistant algorithms in the not too distant future."

> – NSA Information Assurance Directorate, Aug. 2015

| Report on Post-Quantum Cryptography                                                      |
|------------------------------------------------------------------------------------------|
| Lily Chen<br>Stephen Jordan<br>Yi-Kai Liu<br>Dustin Moody<br>Rene Peralta<br>Ray Perlner |
|                                                                                          |

NISTIR 8105

This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.IR.8105



Apr. 2016

## NIST Post-quantum Crypto Project timeline

| September 16, 2016 | Feedback on call for proposals       |
|--------------------|--------------------------------------|
| Fall 2016          | Formal call for proposals            |
| November 2017      | Deadline for submissions             |
| Early 2018         | Workshop – submitters' presentations |
| 3-5 years          | Analysis phase                       |
| 2 years later      | Draft standards ready                |

http://www.nist.gov/pqcrypto

#### Post-quantum / quantum-safe crypto

No known exponential quantum speedup



## Lots of questions

Design better post-quantum key exchange and signature schemes

Improve classical and quantum attacks

Pick parameter sizes

Develop fast, secure implementations

Integrate them into the existing infrastructure

## This talk

- Two key exchange protocols from lattice-based problems
  BCNS15: key exchange from the ring learning with errors problem
  - Frodo: key exchange from the learning with errors problem
- Open Quantum Safe project
  - A library for comparing post-quantum primitives
  - Framework for easing integration into applications like OpenSSL

# Why key exchange?

**Premise:** large-scale quantum computers don't exist right now, but we want to protect today's communications against tomorrow's adversary.

• Signatures still done with traditional primitives (RSA/ECDSA)

- we only need authentication to be secure now
- benefit: use existing RSA-based PKI

• Key agreement done with ring-LWE, LWE, ...

• Also consider "hybrid" ciphersuites that use post-quantum and traditional elliptic curve

# Learning with errors problems

#### Solving systems of linear equations



#### Linear system problem: given blue, find red

#### Solving systems of linear equations



Linear system problem: given blue, find red

#### Learning with errors problem

random

×



+

secret





#### Learning with errors problem



Computational LWE problem: given blue, find red

#### **Decision** learning with errors problem



Decision LWE problem: given blue, distinguish green from random

#### Toy example versus real-world example



 $\overset{\text{random}}{\mathbb{Z}^{7\times 4}_{13}}$ 

| 4  | 1  | 11 | 10 |
|----|----|----|----|
| 10 | 4  | 1  | 11 |
| 11 | 10 | 4  | 1  |
| 1  | 11 | 10 | 4  |
| 4  | 1  | 11 | 10 |
| 10 | 4  | 1  | 11 |
| 11 | 10 | 4  | 1  |

Each row is the cyclic shift of the row above

. . .

 $\overset{\text{random}}{\mathbb{Z}_{13}^{7\times 4}}$ 

| 4  | 1  | 11 | 10 |
|----|----|----|----|
| 3  | 4  | 1  | 11 |
| 2  | 3  | 4  | 1  |
| 12 | 2  | 3  | 4  |
| 9  | 12 | 2  | 3  |
| 10 | 9  | 12 | 2  |
| 11 | 10 | 9  | 12 |

Each row is the cyclic shift of the row above

with a special wrapping rule: x wraps to  $-x \mod 13$ .

. . .

 $\frac{\text{random}}{\mathbb{Z}_{13}^{7\times 4}}$ 



Each row is the cyclic shift of the row above

with a special wrapping rule: x wraps to -x mod 13.

So I only need to tell you the first row.

$$\mathbb{Z}_{13}[x]/\langle x^4+1\rangle$$

|   | $4 + 1x + 11x^2 + 10x^3$ | random      |
|---|--------------------------|-------------|
| × | $6 + 9x + 11x^2 + 11x^3$ | secret      |
| + | $0 - 1x + 1x^2 + 1x^3$   | small noise |
| _ | $10 + 5x + 10x^2 + 7x^3$ |             |

$$\mathbb{Z}_{13}[x]/\langle x^4+1\rangle$$



Computational ring-LWE problem: given blue, find red

# Decision ring learning with errors problem

X





Decision ring-LWE problem: given blue, distinguish green from random

#### Decision ring learning with errors problem with small secrets $\mathbb{Z}_{13}[x]/\langle x^4 + 1 \rangle$



Decision ring-LWE problem: given blue, distinguish green from random

#### Problems

[Reg05] Regev, STOC 2005; J. ACM 2009.



[LPR10] Lyubashevsky, Piekert, Regev. EUROCRYPT 2010.

# Key agreement from ring-LWE

Bos, Costello, Naehrig, Stebila.

Post-quantum key exchange for the TLS protocol from the ring learning with errors problem. *IEEE Symposium on Security & Privacy (S&P) 2015.* 

https://www.douglas.stebila.ca/research/papers/SP-BCNS15/

# Decision ring learning with errors problem with short secrets

**Definition.** Let *n* be a power of 2, *q* be a prime, and  $R_q = \mathbb{Z}_q[X]/(X^n + 1)$  be the ring of polynomials in X with integer coefficients modulo *q* and polynomial reduction modulo  $X^n + 1$ . Let  $\chi$  be a distribution over  $R_q$ .

Let  $s \stackrel{\$}{\leftarrow} \chi$ .

Define:

• 
$$O_{\chi,s}$$
: Sample  $a \stackrel{\$}{\leftarrow} \mathcal{U}(R_q), e \stackrel{\$}{\leftarrow} \chi$ ; return  $(a, as + e)$ .

• U: Sample 
$$(a, b') \stackrel{\$}{\leftarrow} \mathcal{U}(R_q \times R_q)$$
; return  $(a, b')$ .

The decision R-LWE problem with short secrets for  $n, q, \chi$ is to distinguish  $O_{\chi,s}$  from U.

## Hardness of decision ring-LWE



#### Practice:

- Assume the best way to solve DRLWE is to solve LWE.
- Assume solving LWE involves a lattice reduction problem.
- Estimate parameters based on runtime of lattice reduction algorithms e.g. [APS15]
- (Ignore non-tightness.)
   [CKMS16]

[LPR10] Lyubashevsky, Piekert, Regev. *EUROCRYPT 2010.* [ACPS15] Applebaum, Cash, Peikert, Sahai. *CRYPTO 2009.* [CKMS16] Chatterjee, Koblitz, Menezes, Sarkar. ePrint 2016/360

## Basic ring-LWE-DH key agreement (unauthenticated)

• Reformulation of Peikert's ring-LWE KEM (PQCrypto 2014)

public: "big" *a* in  $R_q = \mathbf{Z}_q[x]/(x^n+1)$ Alice Bob secret: secret: random "small" s', e' in  $R_q$ random "small" s, e in  $R_a$  $b = a \cdot s + e$  $b' = a \cdot s' + e'$ shared secret: shared secret:  $s \cdot b' = s \cdot (a \cdot s' \cdot e') \approx s \cdot a \cdot s'$  $b \cdot s' \approx s \cdot a \cdot s'$ These are only approximately equal  $\Rightarrow$  need rounding

# Rounding

- Each coefficient of the polynomial is an integer modulo q
- Treat each coefficient independently

## **Basic rounding**

- Round either to 0 or q/2
- Treat *q*/2 as 1



This works most of the time: prob. failure 2<sup>-10</sup>.

Not good enough: we need exact key agreement.

## Better rounding (Peikert)

Bob says which of two regions the value is in: 4 or 4







## Better rounding (Peikert)

• If  $| alice - bob | \le q/8$ , then this always works.



• For our parameters, probability | *alice* – *bob* | > q/8 is less than  $2^{-128000}$ .

Security not affected: revealing
 or
 leaks no information

## Exact ring-LWE-DH key agreement (unauthenticated)

• Reformulation of Peikert's R-LWE KEM (PQCrypto 2014)

public: "big" a in  $R_q = \mathbb{Z}_q[x]/(x^n+1)$ Alice secret: random "small" s, e in  $R_q$   $b = a \cdot s + e$  $b' = a \cdot s' + e'$ , f or f

shared secret:
round(s • b')

shared secret: round(*b* • *s'*)

# Ring-LWE-DH key agreement

#### **Public parameters**

Decision R-LWE parameters  $q, n, \chi$  $a \stackrel{\$}{\leftarrow} \mathcal{U}(R_q)$ 

| Alice                                                                  |                                | Bob                                                                                                                    |
|------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------|
| $s, e \xleftarrow{\hspace{1.5pt}{\$}} \chi$                            |                                | $s', e' \xleftarrow{\hspace{0.1in}\$} \chi$                                                                            |
| $b \leftarrow as + e \in R_q$                                          | $\overset{b}{\longrightarrow}$ | $b' \leftarrow as' + e' \in R_q$                                                                                       |
|                                                                        |                                | $e'' \stackrel{*}{\leftarrow} \chi$                                                                                    |
|                                                                        |                                | $v \leftarrow bs' + e'' \in R_q$                                                                                       |
|                                                                        | b',c                           | $v \leftarrow \operatorname{dDI}(v) \in R_{2q}$                                                                        |
| $k_A \leftarrow \operatorname{rec}\left(2b's \ c\right) \in \{0,1\}^n$ | <i>(</i>                       | $c \leftarrow \langle v \rangle_{2q,2} \in \{0,1\}$ $k_B \leftarrow \lfloor \overline{v} \rfloor_{2q,2} \in \{0,1\}^n$ |

Secure if decision ring learning with errors problem is hard.

#### Parameters

160-bit classical security, 80-bit quantum security

- *n* = 1024
- *q* = 2<sup>32</sup>–1
- $\chi$  = discrete Gaussian with parameter sigma = 8/sqrt(2 $\pi$ )
- Failure: 2<sup>-12800</sup>
- Total communication: 8.1 KiB

#### Implementation aspect 1: Polynomial arithmetic

• Polynomial multiplication in  $R_q = \mathbf{Z}_q[x]/(x^{1024}+1)$  done with Nussbaumer's FFT:

If  $2^m = rk$ , then

$$\frac{R[X]}{\langle X^{2^m} + 1 \rangle} \cong \frac{\left(\frac{R[Z]}{\langle Z^r + 1 \rangle}\right)[X]}{\langle X^k - Z \rangle}$$

- Rather than working modulo degree-1024 polynomial with coefficients in Z<sub>q</sub>, work modulo:
  - degree-256 polynomial whose coefficients are themselves polynomials modulo a degree-4 polynomial,
  - or degree-32 polynomials whose coefficients are polynomials modulo degree-8 polynomials whose coefficients are polynomials
  - or ...

#### Implementation aspect 2: Sampling discrete Gaussians

$$D_{\mathbb{Z},\sigma}(x) = \frac{1}{S}e^{-\frac{x^2}{2\sigma^2}} \quad \text{for } x \in \mathbb{Z}, \sigma \approx 3.2, S = 8$$

- Security proofs require "small" elements sampled within statistical distance 2<sup>-128</sup> of the true discrete Gaussian
- We use inversion sampling: precompute table of cumulative probabilities
  - For us: 52 elements, size = 10000 bits
- Sampling each coefficient requires six 192-bit integer comparisons and there are 1024 coefficients
  - 51 1024 for constant time

## Sampling is expensive

| Operation                                                               | $\mathbf{Cycles}$ |                   |  |  |
|-------------------------------------------------------------------------|-------------------|-------------------|--|--|
| Operation                                                               | constant-time     | non-constant-time |  |  |
| sample $\stackrel{\hspace{0.1em}\scriptscriptstyle\$}{\leftarrow} \chi$ | 1042700           | 668000            |  |  |
| FFT multiplication                                                      | 342800            |                   |  |  |
| FFT addition                                                            | 1660              |                   |  |  |
| dbl(·) and crossrounding $\langle \cdot \rangle_{2q,2}$                 | 23500             | 21300             |  |  |
| rounding $\lfloor \cdot \rfloor_{2q,2}$                                 | 5500              | 3,700             |  |  |
| reconciliation $\operatorname{rec}(\cdot, \cdot)$                       | 14400             | 6800              |  |  |

#### "NewHope"

Alkim, Ducas, Pöppelman, Scwabe. USENIX Security 2016

- New parameters
- Different error distribution
- Improved performance
- Pseudorandomly generated parameters
- Further performance improvements by others [GS16,LN16,...]

#### Google Security Blog

#### Experimenting with Post-Quantum Cryptography

July 7, 2016



[GS16] Gueron, Schlieker. ePrint 2016/467. [LN16] Longa, Naehrig. ePrint 2016/504.

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html

# Key agreement from LWE

Bos, Costello, Ducas, Mironov, Naehrig, Nikolaenko, Raghunathan, Stebila. Frodo: Take off the ring! Practical, quantum-safe key exchange from LWE. *ACM Conference on Computer and Communications Security (CCS) 2016.* 

https://eprint.iacr.org/2016/659

#### Decision learning with errors problem with short secrets

**Definition.** Let  $n, q \in \mathbb{N}$ . Let  $\chi$  be a distribution over  $\mathbb{Z}$ .

Let  $\mathbf{s} \stackrel{\$}{\leftarrow} \chi^n$ .

Define:

• 
$$O_{\chi,\mathbf{s}}$$
: Sample  $\mathbf{a} \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_q^n), e \stackrel{\$}{\leftarrow} \chi$ ; return  $(\mathbf{a}, \mathbf{a} \cdot \mathbf{s} + e)$ .

• U: Sample 
$$(\mathbf{a}, b') \stackrel{\$}{\leftarrow} \mathcal{U}(\mathbb{Z}_q^n \times \mathbb{Z}_q)$$
; return  $(\mathbf{a}, b')$ .

The decision LWE problem with short secrets for  $n, q, \chi$ is to distinguish  $O_{\chi, \mathbf{s}}$  from U.

## Hardness of decision LWE



#### Practice:

- Assume the best way to solve DLWE is to solve LWE.
- Assume solving LWE involves a lattice reduction problem.
- Estimate parameters based on runtime of lattice reduction algorithms.
- (Ignore non-tightness.)

[BLPRS13] Brakerski, Langlois, Peikert, Regev, Stehlé. *STOC 2013.* [ACPS15] Applebaum, Cash, Peikert, Sahai. *CRYPTO 2009*.

## Generic vs. ideal lattices

- Ring-LWE matrices have additional structure
  - Relies on hardness of a problem in ideal lattices
- LWE matrices have no additional structure
  - Relies on hardness of a problem in generic lattices
- NTRU also relies on a problem in a type of ideal lattices

- Currently, best algorithms for ideal lattice problems are essentially the same as for generic lattices
  - Small constant factor improvement in some cases

 If we want to eliminate this additional structure, can we still get an efficient algorithm?

## "Frodo": LWE-DH key agreement



Secure if decision learning with errors problem is hard (and Gen is a secure PRF).

# Rounding

# **Error distribution**

- We extract 4 bits from each of the 64 matrix entries in the shared secret.
  - More granular form of Peikert's rounding.

Parameter sizes, rounding, and error distribution all found via search scripts.



- Close to discrete Gaussian in terms of Rényi divergence (1.000301)
- Only requires 12 bits of randomness to sample

## Parameters

"Recommended"

- 156-bit classical security, 142-bit quantum security, 112-bit plausible lower bound
- $n = 752, m = 8, q = 2^{15}$
- $\chi$  = approximation to rounded Gaussian with 11 elements
- Failure: 2<sup>-36.5</sup>
- Total communication: 22.6 KiB

All known variants of the sieving algorithm require a list of vectors to be created of this size

#### "Paranoid"

 191-bit classical security, 174-bit quantum security, 138-bit plausible lower bound

• 
$$n = 864, m = 8, q = 2^{15}$$

- $\chi$  = approximation to rounded Gaussian with 13 elements
- Failure: 2<sup>-35.8</sup>
- Total communication: 25.9 KiB

# Standalone performance

## Implementations

Our implementations

- BCNS15
- Frodo

Pure C implementations Constant time Compare with others

- RSA 3072-bit (OpenSSL 1.0.1f)
  ECDH nistp256 (OpenSSL)
  Use assembly code
- NewHope
- NTRU EES743EP1
- SIDH (Isogenies) (MSR) Pure C implementations

#### Standalone performance

| Scheme                    | Alice0 | Bob   | Alice1 |                  | ication (bytes)                    | Claimed   | security |
|---------------------------|--------|-------|--------|------------------|------------------------------------|-----------|----------|
|                           | (ms)   | (ms)  | (ms)   | A $ ightarrow$ B | $\mathbf{B}{ ightarrow}\mathbf{A}$ | classical | quantum  |
| RSA 3072-bit              |        | 0.09  | 4.49   | $387 / 0^*$      | 384                                | 128       |          |
| ${ m ECDH}$ nistp256      | 0.366  | 0.698 | 0.331  | 32               | 32                                 | 128       |          |
| BCNS                      | 1.01   | 1.59  | 0.174  | 4,096            | 4,224                              | 163       | 76       |
| NewHope                   | 0.112  | 0.164 | 0.034  | 1,824            | $2,\!048$                          | 229       | 206      |
| $\mathrm{NTRU}$ EES743EP1 | 2.00   | 0.281 | 0.148  | 1,027            | $1,\!022$                          | 256       | 128      |
| SIDH                      | 135    | 464   | 301    | 564              | 564                                | 192       | 128      |
| Frodo Recomm.             | 1.13   | 1.34  | 0.13   | $  11,\!377$     | $11,\!296$                         | 156       | 142      |
| Frodo Paranoid            | 1.25   | 1.64  | 0.15   | 13,057           | $12,\!976$                         | 191       | 174      |

x86\_64, 2.6 GHz Intel Xeon E5 (Sandy Bridge) – Google n1-standard-4

Note somewhat incomparable security levels

#### Standalone performance

| RSA 3072-bit      | Fast (4 ms)        | Small (0.3 KiB)       |
|-------------------|--------------------|-----------------------|
| ECDH nistp256     | Very fast (0.7 ms) | Very small (0.03 KiB) |
| BCNS              | Fast (1.5 ms)      | Medium (4 KiB)        |
| NewHope           | Very fast (0.2 ms) | Medium (2 KiB)        |
| NTRU EES743EP1    | Fast (0.3–1.2 ms)  | Medium (1 KiB)        |
| SIDH              | Very slow (400 ms) | Small (0.5 KiB)       |
| Frodo Recommended | Fast (1.4 ms)      | Large (11 KiB)        |
| McBits*           | Very fast (0.5 ms) | Very large (360 KiB)  |

\* McBits results from source paper [BCS13] Bernstein, Chou, Schwabe. CHES 2013.

Note somewhat incomparable security levels

# TLS integration and performance

## Integration into TLS 1.2

<u>New ciphersuite:</u> TLS-KEX-SIG-AES256-GCM-SHA384

- SIG = RSA or ECDSA signatures for authentication
- KEX = Post-quantum key exchange
- AES-256 in GCM for authenticated encryption
- SHA-384 for HMAC-KDF



# Security within TLS 1.2

Model:

• authenticated and confidential channel establishment (ACCE) [JKSS12]

Theorem:

- signed LWE/ring-LWE ciphersuite is ACCE-secure if underlying primitives (signatures, LWE/ring-LWE, authenticated encryption) are secure
  - Interesting technical detail for ACCE provable security people: need to move server's signature to end of TLS handshake because oracle-DH assumptions don't hold for ring-LWE or use an IND-CCA KEM for key exchange via e.g. [FO99]

# TLS performance

#### Handshake latency

- Time from when client sends first TCP packet till client receives first application data
- No load on server

#### Connection throughput

 Number of connections per second at server before server latency spikes

# TLS handshake latency compared to NewHope-ECDSA

#### smaller (left) is better



x86\_64, 2.6 GHz Intel Xeon E5 (Sandy Bridge) – server Google n1-standard-4, client -32

Note somewhat incomparable security levels

#### TLS connection throughput

#### **ECDSA** signatures

#### bigger (top) is better



x86\_64, 2.6 GHz Intel Xeon E5 (Sandy Bridge) – server Google n1-standard-4, client -32

Note somewhat incomparable security levels

# Hybrid ciphersuites

- Use both post-quantum key exchange and traditional key exchange
- Example:
  - ECDHE + NewHope
    - Used in Google Chrome experiment
  - ECDHE + Frodo

- Session key secure if either problem is hard
- Why use post-quantum?
  - (Potential) security against future quantum computer
- Why use ECDHE?
  - Security not lost against existing adversaries if post-quantum cryptanalysis advances

# TLS connection throughput – hybrid w/ECDHE



x86\_64, 2.6 GHz Intel Xeon E5 (Sandy Bridge) – server Google n1-standard-4, client -32

#### Note somewhat incomparable security levels

# Open Quantum Safe

Collaboration with Mosca et al., University of Waterloo

https://github.com/open-quantum-safe/

## **Open Quantum Safe**

- Open source C library
- Common interface for key exchange and digital signatures
- 1. Collect post-quantum implementations together
  - Our own software
  - Thin wrappers around existing open source implementations
  - Contributions from others
- 2. Enable direct comparison of implementations
- 3. Support prototype integration into application level protocols
  - Don't need to re-do integration for each new primitive how we did Frodo experiments

#### **Open Quantum Safe architecture**



# Getting involved and using OQS

https://github.com/open-quantum-safe/

If you're writing post-quantum implementations:

- We'd love to coordinate on API
- And include your software if you agree

If you want to prototype or evaluate post-quantum algorithms in applications:

Maybe OQS will be helpful to you

We'd love help with:

- Code review and static analysis
- Signature scheme implementations
- Additional application-level integrations



# Summary

- Exciting research area lots of opportunities!
- Ring-LWE is fast and fairly small
- LWE can achieve reasonable key sizes
- Hybrid ciphersuites will probably play a role in the transition
- Performance differences are muted in application-level protocols
- Parameter sizes and efficiency likely to evolve

Post-quantum key exchange soon to be in demand

# Now hiring!

- Post-doc in any area of post-quantum cryptography
  - Applied or theoretical
- Deadline: August 25, 2016





For more info: <u>https://www.douglas.stebila.ca/research/postdoc/</u>

## Links

#### Ring-LWE key exchange

- <u>https://eprint.iacr.org/2014/599</u>
- https://github.com/dstebila/rlwekex

#### LWE key exchange (Frodo)

- <u>https://eprint.iacr.org/2016/659</u>
- <u>https://github.com/lwe-frodo/</u> (coming soon)

#### Open Quantum Safe

 <u>https://github.com/open-quantum-</u> <u>safe/</u>

#### Post-doc

<u>https://www.douglas.stebila.ca</u>
 <u>/research/postdoc/</u>