
Post-quantum key exchange
for the Internet
Douglas Stebila

Selected Areas in Cryptography • August 12, 2016

Acknowledgements
Collaborators

• Joppe Bos
• Craig Costello and

Michael Naehrig
• Léo Ducas
• Ilya Mironov and

Ananth Raghunathan
• Michele Mosca

• Valeria Nikolaenko

Support
• Australian Research

Council (ARC)
• Natural Sciences and

Engineering Research
Council of Canada (NSERC)

• Queensland University
of Technology

• Tutte Institute for
Mathematics and
Computing

Motivation

Contemporary cryptography
TLS-ECDHE-RSA-AES128-GCM-SHA256

Public-key
cryptography

RSA signatures

difficulty of
factoring

Elliptic curve
Diffie–Hellman
key exchange

difficulty of elliptic
curve discrete

logarithms

Symmetric
cryptography

AES SHA-2

Can be solved efficiently by a
large-scale quantum computer

Building quantum computers

Devoret, Schoelkopf. Science 339:1169–1174, March 2013.

Building quantum computers

Devoret, Schoelkopf. Science 339:1169–1174, March 2013.

When will a large-scale quantum computer be built?

“I estimate a 1/7 chance of
breaking RSA-2048 by 2026
and a 1/2 chance by 2031.”

— Michele Mosca, November 2015
https://eprint.iacr.org/2015/1075

Post-quantum cryptography in academia
Conference series
• PQCrypto 2006
• PQCrypto 2008
• PQCrypto 2010
• PQCrypto 2011
• PQCrypto 2013
• PQCrypto 2014
• PQCrypto 2016

2009

Post-quantum cryptography in government

Aug. 2015 (Jan. 2016)

“IAD will initiate a
transition to quantum
resistant algorithms in
the not too distant
future.”

– NSA Information
Assurance Directorate,

Aug. 2015

Apr. 2016

NIST Post-quantum Crypto Project timeline

September 16, 2016 Feedback on call for proposals
Fall 2016 Formal call for proposals
November 2017 Deadline for submissions
Early 2018 Workshop – submitters’ presentations
3-5 years Analysis phase
2 years later Draft standards ready

http://www.nist.gov/pqcrypto

Post-quantum / quantum-safe crypto

Hash-based

• Merkle
signatures

• Sphincs

Code-based

• McEliece

Multivariate

• multivariate
quadratic

Lattice-
based

• NTRU
• learning with

errors
• ring-LWE

Isogenies

• supersingular
elliptic curve
isogenies

No known exponential quantum speedup

Lots of questions

Design better post-quantum key exchange and signature schemes

Improve classical and quantum attacks

Pick parameter sizes

Develop fast, secure implementations

Integrate them into the existing infrastructure

This talk

• Two key exchange protocols from lattice-based problems
• BCNS15: key exchange from the ring learning with errors problem
• Frodo: key exchange from the learning with errors problem

• Open Quantum Safe project
• A library for comparing post-quantum primitives
• Framework for easing integration into applications like OpenSSL

Why key exchange?

• Signatures still done with traditional primitives (RSA/ECDSA)
• we only need authentication to be secure now
• benefit: use existing RSA-based PKI

• Key agreement done with ring-LWE, LWE, …
• Also consider “hybrid” ciphersuites that use post-quantum and traditional elliptic curve

Premise: large-scale quantum computers don’t
exist right now, but we want to protect today’s

communications against tomorrow’s adversary.

Learning with errors problems

Solving systems of linear equations

Linear system problem: given blue, find red

Z7⇥4
13

secret
Z7⇥1
13Z4⇥1

13

4 1 11 10
5 5 9 5
3 9 0 10
1 3 3 2

12 7 3 4
6 5 11 4
3 3 5 0

4
8
1

10
4

12
9

× =

Solving systems of linear equations

Linear system problem: given blue, find red

Z7⇥4
13

secret
Z7⇥1
13Z4⇥1

13

4 1 11 10
5 5 9 5
3 9 0 10
1 3 3 2

12 7 3 4
6 5 11 4
3 3 5 0

4
8
1

10
4

12
9

6
9
11
11

× =

Learning with errors problem

Z7⇥4
13

random secret small noise
Z7⇥1
13 Z7⇥1

13Z4⇥1
13

4 1 11 10
5 5 9 5
3 9 0 10
1 3 3 2

12 7 3 4
6 5 11 4
3 3 5 0

4
7
2
11
5

12
8

6
9
11
11

0
-1
1
1
1
0
-1

× + =

Learning with errors problem

Computational LWE problem: given blue, find red

Z7⇥4
13

random secret small noise
Z7⇥1
13 Z7⇥1

13Z4⇥1
13

4 1 11 10
5 5 9 5
3 9 0 10
1 3 3 2

12 7 3 4
6 5 11 4
3 3 5 0

4
7
2
11
5

12
8

× + =

Decision learning with errors problem

Decision LWE problem: given blue, distinguish green from random

Z7⇥4
13

random secret small noise looks random
Z7⇥1
13 Z7⇥1

13Z4⇥1
13

4 1 11 10
5 5 9 5
3 9 0 10
1 3 3 2

12 7 3 4
6 5 11 4
3 3 5 0

4
7
2
11
5

12
8

× + =

Toy example versus real-world example

Z7⇥4
13

4 1 11 10
5 5 9 5
3 9 0 10
1 3 3 2

12 7 3 4
6 5 11 4
3 3 5 0

2738 3842 3345 2979 …
2896 595 3607
377 1575

2760
…

752

8

752 × 28 × 15 bits = 11 KiB

Z752⇥8
215

Ring learning with errors problem

Z7⇥4
13

random

4 1 11 10
10 4 1 11
11 10 4 1
1 11 10 4
4 1 11 10

10 4 1 11
11 10 4 1

Each row is the cyclic
shift of the row above

Ring learning with errors problem

Z7⇥4
13

random

4 1 11 10
3 4 1 11
2 3 4 1

12 2 3 4
9 12 2 3

10 9 12 2
11 10 9 12

Each row is the cyclic
shift of the row above
…
with a special wrapping rule:
x wraps to –x mod 13.

Ring learning with errors problem

Z7⇥4
13

random

4 1 11 10 Each row is the cyclic
shift of the row above
…
with a special wrapping rule:
x wraps to –x mod 13.

So I only need to tell you the first row.

Ring learning with errors problem

4 + 1x + 11x2 + 10x3

6 + 9x + 11x2 + 11x3

0 – 1x + 1x2 + 1x3

10 + 5x + 10x2 + 7x3

Z13[x]/hx4 + 1i

random

secret

small noise

×

+

=

Ring learning with errors problem

4 + 1x + 11x2 + 10x3

10 + 5x + 10x2 + 7x3

Z13[x]/hx4 + 1i

random

secret

small noise

Computational ring-LWE problem: given blue, find red

×

+

=

Decision ring learning with errors problem

4 + 1x + 11x2 + 10x3

10 + 5x + 10x2 + 7x3

Z13[x]/hx4 + 1i

random

secret

small noise

looks random

Decision ring-LWE problem: given blue, distinguish green from random

×

+

=

Decision ring learning with errors problem
with small secrets

4 + 1x + 11x2 + 10x3

1 + 0x – 1x2 + 2x3

10 + 5x + 10x2 + 7x3

Z13[x]/hx4 + 1i

random

small secret

small noise

looks random

×

+

=

Decision ring-LWE problem: given blue, distinguish green from random

Problems

Computational
LWE problem

Decision
LWE problem

Computational
ring-LWE problem

Decision
ring-LWE problem

with or without
short secrets

[LPR10] Lyubashevsky, Piekert, Regev. EUROCRYPT 2010.

[Reg05] Regev, STOC 2005; J. ACM 2009.

Key agreement from ring-LWE
Bos, Costello, Naehrig, Stebila.
Post-quantum key exchange for the TLS protocol from the ring learning with errors problem.
IEEE Symposium on Security & Privacy (S&P) 2015.

https://www.douglas.stebila.ca/research/papers/SP-BCNS15/

Decision ring learning with errors problem
with short secrets
Definition. Let n be a power of 2, q be a prime, and Rq = Zq[X]/(Xn

+1) be

the ring of polynomials in X with integer coe�cients modulo q and polynomial

reduction modulo Xn
+ 1. Let � be a distribution over Rq.

Let s
$ �.

Define:

• O�,s: Sample a
$ U(Rq), e

$ �; return (a, as+ e).

• U : Sample (a, b0)
$ U(Rq ⇥Rq); return (a, b0).

The decision R-LWE problem with short secrets for n, q,�
is to distinguish O�,s from U .

Hardness of decision ring-LWE
worst-case approximate shortest
(independent) vector problem
(SVP/SIVP) on ideal lattices in R

search ring-LWE

decision ring-LWE

decision ring-LWE
with short secrets

Practice:
• Assume the best way to solve
DRLWE is to solve LWE.

• Assume solving LWE involves
a lattice reduction problem.

• Estimate parameters based on
runtime of lattice reduction
algorithms e.g. [APS15]

• (Ignore non-tightness.)
[CKMS16]

poly-time [LPR10]

poly-time [LPR10]

tight [ACPS09]

[LPR10] Lyubashevsky, Piekert, Regev. EUROCRYPT 2010.
[ACPS15] Applebaum, Cash, Peikert, Sahai. CRYPTO 2009.
[CKMS16] Chatterjee, Koblitz, Menezes, Sarkar. ePrint 2016/360.

Basic ring-LWE-DH key agreement (unauthenticated)

public: “big” a in Rq = Zq[x]/(xn+1)
Alice

secret:
random “small” s, e in Rq

Bob

secret:
random “small” s’, e’ in Rq

b = a • s + e

b’ = a • s’ + e’

shared secret:
s • b’ = s • (a • s’ • e’) ≈ s • a • s’

shared secret:
b • s’ ≈ s • a • s’

• Reformulation of Peikert’s ring-LWE KEM (PQCrypto 2014)

These are only approximately equal ⇒ need rounding

Rounding
• Each coefficient of the polynomial is an integer modulo q
• Treat each coefficient independently

Basic rounding
• Round either to 0 or q/2
• Treat q/2 as 1

0

q/4

q/2

3q/4

round
to 0

round
to 1

This works
most of the time:
prob. failure 2-10.

Not good enough:
we need exact key

agreement.

Better rounding (Peikert)
Bob says which of two regions
the value is in: or

0

q/4

q/2

3q/4

If 0

q/4

q/2

3q/4

If 0

q/4

q/2

3q/4

Better rounding (Peikert)
• If | alice – bob | ≤ q/8, then this always works.

• For our parameters, probability | alice – bob | > q/8
is less than 2-128000.

• Security not affected: revealing or leaks no information

bob alice

alice

alice

If 0

q/4

q/2

3q/4

Exact ring-LWE-DH key agreement (unauthenticated)

public: “big” a in Rq = Zq[x]/(xn+1)
Alice

secret:
random “small” s, e in Rq

Bob

secret:
random “small” s’, e’ in Rq

b = a • s + e

b’ = a • s’ + e’, or

shared secret:
round(s • b’)

shared secret:
round(b • s’)

• Reformulation of Peikert’s R-LWE KEM (PQCrypto 2014)

Ring-LWE-DH key agreement

Secure if
decision ring
learning with

errors problem is
hard.

Parameters
160-bit classical security,
80-bit quantum security

• n = 1024
• q = 232–1
• 𝜒 = discrete Gaussian with
parameter sigma = 8/sqrt(2π)

• Failure: 2-12800

• Total communication: 8.1 KiB

Implementation aspect 1:

Polynomial arithmetic
• Polynomial multiplication in Rq = Zq[x]/(x1024+1) done with Nussbaumer’s FFT:

• Rather than working modulo degree-1024 polynomial with coefficients in Zq,
work modulo:
• degree-256 polynomial whose coefficients are themselves polynomials modulo a degree-4

polynomial,
• or degree-32 polynomials whose coefficients are polynomials modulo degree-8 polynomials

whose coefficients are polynomials
• or …

If 2m = rk, then

R[X]

hX2m + 1i
⇠=

⇣
R[Z]

hZr+1i

⌘
[X]

hXk � Zi

Implementation aspect 2:

Sampling discrete Gaussians

• Security proofs require “small” elements sampled within statistical distance
2-128 of the true discrete Gaussian

• We use inversion sampling: precompute table of cumulative probabilities
• For us: 52 elements, size = 10000 bits

• Sampling each coefficient requires six 192-bit integer comparisons and there
are 1024 coefficients
• 51 • 1024 for constant time

DZ,�(x) =
1

S

e

� x

2

2�2
for x 2 Z,� ⇡ 3.2, S = 8

Sampling is expensive

“NewHope”
Alkim, Ducas, Pöppelman, Scwabe.
USENIX Security 2016

• New parameters
• Different error distribution
• Improved performance
• Pseudorandomly generated
parameters

• Further performance
improvements by others
[GS16,LN16,…]

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html[GS16] Gueron, Schlieker. ePrint 2016/467.
[LN16] Longa, Naehrig. ePrint 2016/504.

Key agreement from LWE
Bos, Costello, Ducas, Mironov, Naehrig, Nikolaenko, Raghunathan, Stebila.
Frodo: Take off the ring! Practical, quantum-safe key exchange from LWE.
ACM Conference on Computer and Communications Security (CCS) 2016.

https://eprint.iacr.org/2016/659

Decision learning with errors problem with short secrets

Definition. Let n, q 2 N. Let � be a distribution over Z.

Let s
$ �n.

Define:

• O�,s: Sample a
$ U(Zn

q), e
$ �; return (a,a · s+ e).

• U : Sample (a, b0)
$ U(Zn

q ⇥ Zq); return (a, b0).

The decision LWE problem with short secrets for n, q,�
is to distinguish O�,s from U .

Hardness of decision LWE

worst-case gap shortest
vector problem (GapSVP)

decision LWE

decision LWE
with short secrets

Practice:
• Assume the best way to solve
DLWE is to solve LWE.

• Assume solving LWE involves
a lattice reduction problem.

• Estimate parameters based on
runtime of lattice reduction
algorithms.

• (Ignore non-tightness.)

poly-time [BLPRS13]

tight [ACPS09]

[BLPRS13] Brakerski, Langlois, Peikert, Regev, Stehlé. STOC 2013.
[ACPS15] Applebaum, Cash, Peikert, Sahai. CRYPTO 2009.

Generic vs. ideal lattices
• Ring-LWE matrices have
additional structure
• Relies on hardness of a problem in

ideal lattices

• LWE matrices have
no additional structure
• Relies on hardness of a problem in

generic lattices

• NTRU also relies on a problem in
a type of ideal lattices

• Currently, best algorithms for ideal
lattice problems are essentially
the same as for generic lattices
• Small constant factor improvement in

some cases

• If we want to eliminate this
additional structure, can we still
get an efficient algorithm?

“Frodo”: LWE-DH key agreement

Uses two matrix forms of LWE:
• Public key is n x n matrix
• Shared secret is m x n matrix

Secure if
decision learning

with errors
problem is hard

(and Gen is a secure PRF).

A generated
pseudorandomly

Rounding
• We extract 4 bits from each of
the 64 matrix entries in the
shared secret.
• More granular form of Peikert’s

rounding. 1 15
104

406

919

1206

919

406

104
15 1

0

200

400

600

800

1000

1200

1400

-5 -4 -3 -2 -1 0 1 2 3 4 5

Error distribution

• Close to discrete Gaussian in
terms of Rényi divergence
(1.000301)

• Only requires 12 bits of
randomness to sample

var. = 1.75

Parameter sizes, rounding,
and error distribution all found
via search scripts.

Parameters

“Recommended”
• 156-bit classical security,

142-bit quantum security,
112-bit plausible lower bound

• n = 752, m = 8, q = 215

• 𝜒 = approximation to rounded
Gaussian with 11 elements

• Failure: 2-36.5

• Total communication: 22.6 KiB

“Paranoid”
• 191-bit classical security,

174-bit quantum security,
138-bit plausible lower bound

• n = 864, m = 8, q = 215

• 𝜒 = approximation to rounded
Gaussian with 13 elements

• Failure: 2-35.8

• Total communication: 25.9 KiB

All known variants of the sieving algorithm require a
list of vectors to be created of this size

Standalone performance

Implementations
Our implementations

• BCNS15
• Frodo

Pure C implementations
Constant time

Compare with others

• RSA 3072-bit (OpenSSL 1.0.1f)
• ECDH nistp256 (OpenSSL)
Use assembly code

• NewHope
• NTRU EES743EP1
• SIDH (Isogenies) (MSR)
Pure C implementations

Standalone performance

Scheme Alice0 Bob Alice1 Communication (bytes) Claimed security

(ms) (ms) (ms) A!B B!A classical quantum

RSA 3072-bit — 0.09 4.49 387 / 0⇤ 384 128 —
ECDH nistp256 0.366 0.698 0.331 32 32 128 —

BCNS 1.01 1.59 0.174 4,096 4,224 163 76
NewHope 0.112 0.164 0.034 1,824 2,048 229 206
NTRU EES743EP1 2.00 0.281 0.148 1,027 1,022 256 128
SIDH 135 464 301 564 564 192 128

Frodo Recomm. 1.13 1.34 0.13 11,377 11,296 156 142

Frodo Paranoid 1.25 1.64 0.15 13,057 12,976 191 174

Scheme Alice0 Bob Alice1 Communication (bytes) Claimed security

(ms) (ms) (ms) A!B B!A classical quantum

RSA 3072-bit — 0.09 4.49 387 / 0⇤ 384 128 —
ECDH nistp256 0.366 0.698 0.331 32 32 128 —

BCNS 1.01 1.59 0.174 4,096 4,224 163 76
NewHope 0.112 0.164 0.034 1,824 2,048 229 206
NTRU EES743EP1 2.00 0.281 0.148 1,027 1,022 256 128
SIDH 135 464 301 564 564 192 128

Frodo Recomm. 1.13 1.34 0.13 11,377 11,296 156 142

Frodo Paranoid 1.25 1.64 0.15 13,057 12,976 191 174

x86_64, 2.6 GHz Intel Xeon E5 (Sandy Bridge) – Google n1-standard-4

Scheme Alice0 Bob Alice1 Communication (bytes) Claimed security

(ms) (ms) (ms) A!B B!A classical quantum

RSA 3072-bit — 0.09 4.49 387 / 0⇤ 384 128 —
ECDH nistp256 0.366 0.698 0.331 32 32 128 —

BCNS 1.01 1.59 0.174 4,096 4,224 163 76
NewHope 0.112 0.164 0.034 1,824 2,048 229 206
NTRU EES743EP1 2.00 0.281 0.148 1,027 1,022 256 128
SIDH 135 464 301 564 564 192 128

Frodo Recomm. 1.13 1.34 0.13 11,377 11,296 156 142

Frodo Paranoid 1.25 1.64 0.15 13,057 12,976 191 174

Scheme Alice0 Bob Alice1 Communication (bytes) Claimed security

(ms) (ms) (ms) A!B B!A classical quantum

RSA 3072-bit — 0.09 4.49 387 / 0⇤ 384 128 —
ECDH nistp256 0.366 0.698 0.331 32 32 128 —

BCNS 1.01 1.59 0.174 4,096 4,224 163 76
NewHope 0.112 0.164 0.034 1,824 2,048 229 206
NTRU EES743EP1 2.00 0.281 0.148 1,027 1,022 256 128
SIDH 135 464 301 564 564 192 128

Frodo Recomm. 1.13 1.34 0.13 11,377 11,296 156 142

Frodo Paranoid 1.25 1.64 0.15 13,057 12,976 191 174

Note somewhat incomparable security levels

Standalone performance
RSA 3072-bit Fast (4 ms) Small (0.3 KiB)
ECDH nistp256 Very fast (0.7 ms) Very small (0.03 KiB)
BCNS Fast (1.5 ms) Medium (4 KiB)
NewHope Very fast (0.2 ms) Medium (2 KiB)
NTRU EES743EP1 Fast (0.3–1.2 ms) Medium (1 KiB)
SIDH Very slow (400 ms) Small (0.5 KiB)
Frodo Recommended Fast (1.4 ms) Large (11 KiB)
McBits* Very fast (0.5 ms) Very large (360 KiB)

* McBits results from source paper [BCS13] Bernstein, Chou, Schwabe. CHES 2013. Note somewhat incomparable security levels

TLS integration and performance

Integration into TLS 1.2
New ciphersuite:
TLS-KEX-SIG-AES256-GCM-
SHA384
• SIG = RSA or ECDSA
signatures for authentication

• KEX = Post-quantum key
exchange

• AES-256 in GCM for
authenticated encryption

• SHA-384 for HMAC-KDF

Security within TLS 1.2
Model:
• authenticated and confidential channel establishment (ACCE) [JKSS12]

Theorem:
• signed LWE/ring-LWE ciphersuite is ACCE-secure if underlying primitives

(signatures, LWE/ring-LWE, authenticated encryption) are secure
• Interesting technical detail for ACCE provable security people: need to move server’s

signature to end of TLS handshake because oracle-DH assumptions don’t hold for ring-
LWE or use an IND-CCA KEM for key exchange via e.g. [FO99]

[JKSS12] Jager, Kohlar, Schäge, Schwenk. CRYPTO 2012.
[FO99] Fujisaki, Okamoto. PKC 1999.

TLS performance

Handshake latency

• Time from when client
sends first TCP packet
till client receives first
application data

• No load on server

Connection throughput

• Number of connections
per second at server
before server latency
spikes

TLS handshake latency
compared to NewHope-ECDSA

1.51x

1.65x

1.00x

1.55x

1.17x

1.71x

1.64x

1.08x

1.69x

1.33x

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Frodo Recom.

NTRU

NewHope

BCNS

ECDH nistp256

RSA sig ECDSA sig

x86_64, 2.6 GHz Intel Xeon E5 (Sandy Bridge) – server Google n1-standard-4, client -32 Note somewhat incomparable security levels

smaller (left) is better

TLS connection throughput
ECDSA signatures

0

200

400

600

800

1000

1200

1400

1600

1 B 1 KiB 10 KiB 100 KiB
Payload size

NewHope

ECDHE

Frodo Recom.

BCNS

NTRU

1.75x

1.17x

x86_64, 2.6 GHz Intel Xeon E5 (Sandy Bridge) – server Google n1-standard-4, client -32 Note somewhat incomparable security levels

bigger (top) is better

Hybrid ciphersuites
• Use both post-quantum key
exchange and traditional key
exchange

• Example:
• ECDHE + NewHope

• Used in Google Chrome experiment
• ECDHE + Frodo

• Session key secure if either
problem is hard

• Why use post-quantum?
• (Potential) security against future

quantum computer

• Why use ECDHE?
• Security not lost against existing

adversaries if post-quantum
cryptanalysis advances

TLS connection throughput – hybrid w/ECDHE
ECDSA signatures

0

200

400

600

800

1000

1 B 1 KiB 10 KiB 100 KiB
Payload size

NewHope

Frodo Recom.

BCNS

NTRU

1.49x

1.16x

x86_64, 2.6 GHz Intel Xeon E5 (Sandy Bridge) – server Google n1-standard-4, client -32 Note somewhat incomparable security levels

bigger (top) is better

Open Quantum Safe
Collaboration with Mosca et al., University of Waterloo

https://github.com/open-quantum-safe/

Open Quantum Safe
• Open source C library
• Common interface for key exchange and digital signatures

1. Collect post-quantum implementations together
• Our own software
• Thin wrappers around existing open source implementations
• Contributions from others

2. Enable direct comparison of implementations

3. Support prototype integration into application level protocols
• Don’t need to re-do integration for each new primitive – how we did Frodo experiments

Open Quantum Safe architecture

Open Quantum Safe Library

OQS-KEX

Ring-LWE

BCNS15 New Hope

LWE McEliece NTRU SIDH

OQS-SIG

Hash LWE/ring-
LWE

OQS
benchmark

Apache
httpd

OpenSSL

OTR …

Primitive
implementations

Application
integrations

API

Getting involved and using OQS
https://github.com/open-quantum-safe/

If you’re writing post-quantum
implementations:

• We’d love to coordinate on API
• And include your software if you

agree

If you want to prototype or
evaluate post-quantum
algorithms in applications:

• Maybe OQS will be helpful to you

We’d love help with:
• Code review and static analysis
• Signature scheme

implementations
• Additional application-level

integrations

Summary

Summary
• Exciting research area – lots of opportunities!

• Ring-LWE is fast and fairly small
• LWE can achieve reasonable key sizes
• Hybrid ciphersuites will probably play a role in the transition
• Performance differences are muted in application-level protocols
• Parameter sizes and efficiency likely to evolve

• Post-quantum key exchange soon to be in demand

Now hiring!
• Post-doc in any area of
post-quantum cryptography
• Applied or theoretical

• Deadline: August 25, 2016

For more info:
https://www.douglas.stebila.ca/research/postdoc/

Links
Ring-LWE key exchange

• https://eprint.iacr.org/2014/599
• https://github.com/dstebila/rlwekex

LWE key exchange (Frodo)
• https://eprint.iacr.org/2016/659
• https://github.com/lwe-frodo/

(coming soon)

Open Quantum Safe
• https://github.com/open-quantum-

safe/

Post-doc
• https://www.douglas.stebila.ca

/research/postdoc/

