Provable security of
advanced properties of
TLS and SSH

Dr Douglas Stebila

joint work with Ben Dowling (QUT),
Florian Bergsma (né Giesen), Florian Kohlar,
Jorg Schwenk (Bochum)

IACR eprint 2012/630 (ACM CCS 2013)
IACR eprint 2013/813 (ACM CCS 2014)

QUT Queensland University
of Technology

Supported by:

Australian Technology Network-
German Academic Exchange
Service (ATN-DAAD) Joint
Research Cooperation Scheme

Australian Research Council

Discovery Project
DP130104304

7y
i
00
=)
O
]
0
S
O
<
"
=
©
f=
i
T
<
=
©
—
s
T
-
T
m

- > | |
| J
|
" ,,
A " !
! A
.) .
$ X
L
3 N
& \ N i i
1y { J S N
e IR 4 /
T R
[50k . v B
AR
§ &G
)y 3
N e A v

A
. : N

TLS (Transport Layer Security) protocol

a.k.a. SSL (Secure Sockets Layer)

® O O / quT|QuT Login

o C | & https://esoe.qut.edu.au/web/login.htm

“m - “ ” Quet .qut.edu.
The “s” in “https TR Pt

QUT Home

H Permissions Connection
The most important : :
O ﬁ Thefidentity of this website has been
y t h verified by AusCERT Server CA.
c r p Og ra p I c Certificate Information
p rOto co I O n t h e @ Your connection to esoe.qut.edu.au is
encrypted with 128-bit encryption.

Internet — used to e comection uses 115 1.2

u n The connectjon is encrypted using
secure billions of et ant £ox st

exchange mechanism.

connections every g 5o

You first visited this site on Aug 28,

day.

What do these mean?

]

1T]

=+

ter

SSH (Secure Shell) protocol

o

® 00 £ stebila@sefwebwork01:~ — ssh — 88x27 %

remote access (like
stebila@FST-MIP-051931:~ > ssh webwork.qut.edu.au]
The authenticity of host 'webwork.qut.edu.au (131.181.184.162)' can't be established.
RSA key fingerprint is 9d:0@e:86:e5:1e:de:97:d0:fc:d3:85:65:93:89:¢8:26. e n e u S e‘ : u re
Are you sure you want to continue connecting (yes/no)? yes ’

Warning: Permanently added 'webwork.qut.edu.au,131.181.184.162' (RSA) to the list of kno

wn hosts.

* +

* Access to this computer system is only for authorised QUT staff and students *

* and external persons authorised by QUT. *

* *

* WARNING: It is a criminal offence to: *

* i. Obtain access to data without authority. *

* ii. Damage, delete, alter or insert data without authority. = . "
* *

* Communications on or through QUT's computer systems are monitored and * I rov I d e S u b I I C ke
* recorded to secure effective system operation and for other lawful purposes. *

+ +

T P 7 s b P authentication of
servers and clients
and encrypted
communication

TLS vs. SSH

TLS

provides secure
transport for many
applications

entity authentication

confidentiality &
integrity of
transmissions

handshake establishes
secure channel

SSH

provides secure
transport primarily for
remote shell logins

entity authentication

confidentiality &
integrity of
transmissions

handshake establishes
secure channel

Commonalities of TLS and SSH

Structure

“ e gotiation
a u t h entjcation
kex key exchange

co nf identiality
i n t egrity

Security goals

From an application
perspective, TLS and SSH
provide:

= entity authentication

= confidentiality and
integrity of messages

Outline

Provable security of TLS

TLS renegotiation
= Motivated by existing attack from 2009

= Extended security models to prove security of standardized
countermeasures for TLS renegotiation

Multi-ciphersuite security and SSH

= Generic results on securely composing multiple protocols
that share long-term keys

= First security results for full SSH protocol

Conclusions and opinions on secure channel
definitions

Structure of TLS

Negotiation of cryptographic parameters
Authentication (one-way or mutual) using public key certificates
Establishment of a master secret key
Derivation of encryption and authentication keys

Key confirmation

HANDSHAKE PROTOCOL

Authenticated encryption of application data

RECORD
LAYER

Structure

d| ClientHello

. Servi ,Ifello

8 Certificate*

- erverKeyExchange*

o ertificateRequest*

E il |7 ServerHelloDone
Certificate*

LLl

% | ClientKeyExchange

<C | CertificateVerify*

(:’:’ (derive session keys

A | [ChangeCipherSpec]

Z | Finished (derive session keys)

< [ChangeCipherSpec]

- SR Finished

7 | v/

RECORD
LAYER

authenticated encryption

Optional compression

Components of TLS

Crypto

primitives

*RSA, DSA,
ECDSA

* Diffie-Hellman,
ECDH

*HMAC

* MD5, SHA1,
SHA-2

*DES, 3DES, RC4,
AES

* Data structures

* Key derivation

* Encryption
modes, IVs

* Padding

Advanced

functionality

* Alerts & errors *OpenSSL

* Certification / *GnuTLS
revocation e SChannel

* Negotiation e Java JSSE

* Renegotiation

*Session
resumption

* Key reuse

e Compression

* Web browsers:
Chrome, Firefox,
IE, Safari

* Web servers:
Apache, IS, ...

* Application
SDKs

* Certificates

Is TLS secure?

Core cryptographic
components

Handshake protocol

= secure authenticated key
exchange protocol?

Record layer

= secure authenticated
encryption channel?

Additional protocol
functionality

Alerts & errors?
Certification?
Renegotiation?
Session resumption?
Long-term key re-use?

Is TLS secure?

Ildea Problem

Prove the TLS handshake is a TLS handshake sends

secit:re auther:ticalted key messages encrypted
exchange protoco :
gep under the session key
= BR or CK or eCK model:

adversary can't distinguish "=> between

real session key from random handshake and record

session key layer
Prove the TLS neg = Adversary can neg
record layer is a auth distinguish real | auth
secure session ke =

. kex ¢ “REX

authenticated from random

encryption conf conf
scheme int int

1996, .~

SSL v3.0
standardized

2001/

Is TLS secure?

Some
variant of
ohe
ciphersuite
of the TLS
record layer
IS a secure
encryption

scheme
[Kra01]

Truncated

¥ TLS
“__ handshake

2002

using RSA
key transport
is a secure
authenticated
key exchange

protocol
[JKO2]

Truncated
TLS

.= handshake

2008

using RSA
key transport
or signed
Diffie-
Hellman is a

secure AKE
[MSWOS8]

1996, .~

SSL v3.0
standardized

i
o
AN

Is TLS secure?

Some modes
of TLS record
layer are
secure
authenticated
encryption
schemes

[PRS11]

Unaltered

ciphersuite is
a secure
channel

[JKSS12]

NS

2013

Most
unaltered
full TLS
ciphersuites
are a secure
channel
[KSS13,

KPW13,
BFKPS13]

Security goals of TLS and SSH

-
g
«2

auth

ble v
| A N"F 4 N

conf
int

Authenticated and
Confidential Channel
Establishment (ACCE)
security definition
[JKSS12] captures:

= entity authentication

= confidentiality and
integrity of messages

Components of TLS

Crypto Advanced
primitives functionality

*RSA, DSA, e Data structures e Alerts & errors *OpenSSL * Web browsers:

ECDSA * Key derivation « Certification / e GnuTLS Chrome, Firefox,
* Diffie-Hellman, «Encryption revocation «SChannel IE, Safari

ECDH modes, IVs « Negotiation «Java JSSE *Web servers:
*HMAC * Padding * Renegotiation Apache, IIS, ...
* MD5, SHA1, e Session ® Application

SHA-2 resumption SDKs
* DES, 3DES, RC4, « Key reuse « Certificates

AES e Compression

Real-world attacks on TLS

Heartbleed

Debian goto fail;
OpenSSL

Bleichenbacher &iroPY Pug

RSA PKCSv1

11Ul 'Ilulll]

Lik pplications

e Alerts & errors
* Certification / * GnuTLS _
revocation e SChannel IE, Safari

 Diffie-Hellman,

ECDH * Negotiation *Web serve
*HMAC * Padding * Renegotiatia Apache, IIS,
*MD5, SHA1,

SHA-2
*DES, 3DES, RC4

* Compressi

Ray & Dispensa
renegotiation
attack

Rizzo & Duong
“CRIME” attack

Extending provable security results

Crypto Advanced
primitives functionality

*RSA, DSA, e Data structures e Alerts & errors *OpenSSL * Web browsers:

ECDSA *Key derivation = «Certification / *GnuTLS Chrome, Firefox,
* Diffie-Hellman, «Encryption revocation «SChannel IE, Safari

ECDH modes, IVs * Negotiation e Java JSSE *Web servers:
*HMAC * Padding Renegotiation A L oo
* MD5, SHA1, Io Session 'égf(llcatlon

SHA-2 resumotion S
« DES, 3DES, RC4, \ < Key reuse * Certificates

|

sCom

Other recent work [BFKPS13,BDFPS14,BFKPSZ14,...]
looks at several layers simultaneously.

ACM CCS
2013

IACR eprint
2012/630

Why renegotiate?

Renegotiation allows parties in an established TLS
channel to create a new TLS channel that

continues from the existing one.

Once you've established a TLS channel, why would
you ever want to renegotiate it?

= Change cryptographic parameters
= Change authentication credentials

= |[dentity hiding for client
second handshake messages sent encrypted under first record
layer
= Refresh encryption keys
more forward secrecy
Lecord layer has maximum number of encryptions per session
ey

Renegotiation in TLS

(pre-November 2009)

Client Server
TLS handshake, X (TLS)

TLS recordlayer,

TLS handshake, /

TLS recordlayer,

TLS Renegotiation “Attack”

Ray & Dispensa, November 2QC

Client Eve Server
TLS handshake,g (application)

TLS handshe

<€

<

TLS recordlayerg

/\ \ Application
> receives

Mg
() concatenation

of record layers
\J]

TLS recordlayer,g

Example: HTTP Injection

Attacker sends

*m; = “GET /orderPizza?deliverTo=123-Fake-St<
X-Ignore-This: ”

Client sends

*m, = “GET /orderPizza?deliverTo=456-Real-St<
Cookie: Account=1A2B"

Server’'s web server receives

*=m¢ || m, = “GET /orderPizza?deliverTo=123-Fake-St<
X-lgnore-This: GET /orderPizza?deliverTo=456-Real-St<
Cookie: Account=1A2B"

Renegotiation security

Q: What property should a secure renegotiable
protocol have?

A: Whenever two parties successfully
renegotiate, they are assured they have the
exact same view of everything that happened
previously.

Every time we accept, we have a matching
conversation of previous handshakes and
record layers.

TLS Renegotiation Countermeasures

Two related countermeasures standardized by
IETF in RFC 5746:

Signalling Ciphersuite Value
Renegotiation Indication Extension

Basic idea: include fingerprint of previous
handshake when renegotiating.

Note: This is a "white-box" modification of TLS.

TLS Renegotiation Countermeasures

Renegotiation Support

1 ® Secure renegotiation
SC.SV/RIE falr!y QA 134,2979
quickly and widely +0.4%
a d o) pte d) ® Insecure renegotiation
6,709
Bo:(h
Currently 88% 2,039
deployment o

No support

(SSL Pulse, Sept 3, 2014) 8,922

-0.1%

Does this really fix the
problem?

Does this really fix the problem?

Existing security definition (ACCE) isn’t enough:
these ciphersuites have been proven ACCE-
secure yet are vulnerable to renegotiation

attack.

To answer the question, need a security
definition that includes renegotiation.

Secure renegotiable ACCE

Definition

When a party
successfully renegotiates
a hew phase, its partner
has a phase with a
matching handshake and
record layer transcript

allowing maximal reveal
of secrets

TLS

TLS without fixes is not
a secure renegotiable
ACCE.

TLS with RFC 5746 fixes
Is hot a secure
renegotiable ACCE.

Weakly secure renegotiable ACCE

Definition

When a party
successfully renegotiate
a hew phase, its partner
has a phase with a
matching handshake and
record layer transcript,
provided no previous
phase’s session key was
revealed.

TLS

TLS without fixes is not
a weakly secure
renegotiable ACCE.

TLS with RFC 5746 fixes
is a weakly secure
renegotiable ACCE.

= (This is probably good
enough.)

TLS renegotiation conclusions

Renegotiation not
previously included
in AKE/channel
security definitions.

= Different levels of
renegotiation security

Security of a
protocol in isolation
doesn’t imply
security with
renegotiation.

Need to “open up”
ACCE security
definitions in order
to generically
transform protocols.

Confidence in
standardized TLS
renegotiation fixes.

Triple handshake attack

[BDFPS14]

Man-in-the-middle
attack on three
consecutive
handshakes

Relies on session
resumption and
renegotiation

=works even with RIE
countermeasure

Works due to lack of
binding between
sessions during
session resumption

ACM CCS
2014

IACR eprint
2013/813

TLS_NULL_WITH_NULL_NULL TLS_RSA_WITH_NULL_MD5 TLS_RSA_WITH_NULL_SHA TLS_RSA_EXPORT_WITH_RC4_40_MD5 TLS_RSA_WITH_RC4_128_MD5 TLS_RSA_WITH_RC4_128_SHA
TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5 TLS_RSA_WITH_IDEA_CBC_SHA TLS_RSA_EXPORT_WITH_DES40_CBC_SHA TLS_RSA_WITH_DES_CBC_SHA TLS_RSA_WITH_3DES_EDE_CBC_SHA
TLS_DH_DSS_EXPORT_WITH_DES40_CBC_SHA TLS_DH_DSS_WITH_DES_CBC_SHA TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA TLS_DH_RSA_WITH_DES_CBC_SHA
TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA TLS_DHE_DSS_WITH_DES_CBC_SHA TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
TLS_DHE_RSA_WITH_DES_CBC_SHA TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA TLS_DH_anon_EXPORT_WITH_RC4_40_MD5 TLS_DH_anon_WITH_RC4_128_MD5 TLS_DH_anon_EXPORT_WITH_DES40_GBC_SHA
TLS_DH_anon_WITH_DES_CBC_SHA TLS_DH_anon_WITH_3DES_EDE_CBC_SHA TLS_KRB5_WITH_DES_CBC_SHA TLS_KRB5_WITH_3DES_EDE_CBC_SHA TLS_KRB5_WITH_RC4_128_SHA TLS_KRB5_WITH_IDEA_CBC_SHA
TLS_KRB5_WITH_DES_CBC_MD5 TLS_KRB5_WITH_3DES_EDE_CBC_MDS5 TLS_KRB5_WITH_RC4_128_MD5 TLS_KRB5_WITH_IDEA_CBC_MD5 TLS_KRB5_EXPORT_WITH_DES_CBC_40_SHA
TLS_KRB5_EXPORT_WITH_RC2_CBC_40_SHA TLS_KRB5_EXPORT_WITH_RC4_40_SHA TLS_KRB5_EXPORT_WITH_DES_CBC_40_MD5 TLS_KRB5_EXPORT_WITH_RC2_CBC_40_MD5 TLS_KRB5_EXPORT_WITH_RC4_40_MD5
TLS_PSK_WITH_NULL_SHA TLS_DHE_PSK_WITH_NULL_SHA TLS_RSA_PSK_WITH_NULL_SHA TLS_RSA_WITH_AES_128_CBC_SHA TLS_DH_DSS_WITH_AES_128_CBC_SHA TLS_DH_RSA_WITH_AES_128_CBC_SHA
TLS_DHE_DSS_WITH_AES_128_CBC_SHA TLS_DHE_RSA_WITH_AES_128_CBC_SHA TLS_DH_anon_WITH_AES_128_CBC_SHA TLS_RSA_WITH_AES_256_CBC_SHA TLS_DH_DSS_WITH_AES_256_CBC_SHA
TLS_DH_RSA_WITH_AES_256_CBC_SHA TLS_DHE_DSS_WITH_AES_256_CBC_SHA TLS_DHE_RSA_WITH_AES_256_CBC_SHA TLS_DH_anon_WITH_AES_256_CBC_SHA TLS_RSA_WITH_NULL_SHA256
TLS_RSA_WITH_AES_128_CBC_SHA256 TLS_RSA_WITH_AES_256_CBC_SHA256 TLS_DH_DSS_WITH_AES_128_CBC_SHA256 TLS_DH_RSA_WITH_AES_128_CBC_SHA256 TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
TLS_RSA_WITH_CAMELLIA_128_CBC_SHA TLS_DH_DSS_WITH_CAMELLIA_128_CBC_SHA TLS_DH_RSA_WITH_CAMELLIA_128_CBC_SHA TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA
TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA TLS_DH_anon_WITH_CAMELLIA_128_CBC_SHA TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 TLS_DH_DSS_WITH_AES_256_CBC_SHA256
TLS_DH_RSA_WITH_AES_256_CBC_SHA256 TLS_DHE_DSS_WITH_AES_256_CBC_SHA256 TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 TLS_DH_anon_WITH_AES_128_CBC_SHA256
TLS_DH_anon_WITH_AES_256_CBC_SHA256 TLS_RSA_WITH_CAMELLIA_256_CBC_SHA TLS_DH_DSS_WITH_CAMELLIA_256_CBC_SHA TLS_DH_RSA_WITH_CAMELLIA_256_CBC_SHA
TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA TLS_DH_anon_WITH_CAMELLIA_256_CBC_SHA TLS_PSK_WITH_RC4_128_SHA TLS_PSK_WITH_3DES_EDE_CBC_C”A
TLS_PSK_WITH_AES_128_CBC_SHA TLS_PSK_WITH_AES_256_CBC_SHA TLS_DHE_PSK_WITH_RC4_128_SHA TLS_DHE_PSK_WITH_3DES_EDE_CBC_SHA TLS_DHE_PSK_WITH_AES_128_CBC_SHA
TLS_DHE_PSK_WITH_AES_256_CBC_SHA TLS_RSA_PSK_WITH_RC4_128_SHA TLS_RSA_PSK_WITH_3DES_EDE_CBC_SHA TLS_RSA_PSK_WITH_AES_128_CBC_SHA TLS_RSA_PSK_WITH_AES_256_CBC_SHA
TLS_RSA_WITH_SEED_CBC_SHA TLS_DH_DSS_WITH_SEED_CBC_SHA TLS_DH_RSA_WITH_SEED_CBC_SHA TLS_DHE_DSS_WITH_SEED_CBC_SHA TLS_DHE_RSA_WITH_SEED_CBC_SHA TLS_DH_anon_WITH_SEEL 3£ C, & it
TLS_RSA_WITH_AES_128_GCM_SHA256 TLS_RSA_WITH_AES_256_GCM_SHA384 TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 TLS_DH_RSA_WITH_AES_128_GCM_SHA256
TLS_DH_RSA_WITH_AES_256_GCM_SHA384 TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 TLS_DH_DSS_WITH_AES_128_GCM_SHA256
TLS_DH_DSS_WITH_AES_256_GCM_SHA384 TLS_DH_anon_WITH_AES_128_GCM_SHA256 TLS_DH_anon_WITH_AES_256_GCM_SHA384 TLS_PSK_WITH_AES_128_GCM_SHA256 TLS_PSK_WITH_AES_256_GCM_SHA384
TLS_DHE_PSK_WITH_AES_128_GCM_SHA256 TLS_DHE_PSK_WITH_AES_256_GCM_SHA384 TLS_RSA_PSK_WITH_AES_128_GCM_SHA256 TLS_RSA_PSK_WITH_AES_256_GCM_SHA384
TLS_PSK_WITH_AES_128_CBC_SHA256 TLS_PSK_WITH_AES_256_CBC_SHA384 TLS_PSK_WITH_NULL_SHA256 TLS_PSK_WITH_NULL_SHA384 TLS_DHE_PSK_WITH_AES_128_CBC_SHA256
TLS_DHE_PSK_WITH_AES_256_CBC_SHA384 TLS_DHE_PSK_WITH_NULL_SHA256 TLS_DHE_PSK_WITH_NULL_SHA384 TLS_RSA_PSK_WITH_AES_128_CBC_SHA256 TLS_RSA_PSK_WITH_AES_256_CBC_SHA384
TLS_RSA_PSK_WITH_NULL_SHA256 TLS_RSA_PSK_WITH_NULL_SHA384 TLS_RSA_WITH_CAMELLIA_128_CBC_SHA256 TLS_DH_DSS_WITH_CAMELLIA_128_CBC_SHA256 TLS_DH_RSA_WITH_CAMELLIA_128_CBC_SHA256
TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA256 TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA256 TLS_DH_anon_WITH_CAMELLIA_128_CBC_SHA256 TLS_RSA_WITH_CAMELLIA_256_CBC_SHA256
TLS_DH_DSS_WITH_CAMELLIA_256_CBC_SHA256 TLS_DH_RSA_WITH_CAMELLIA_256_CBC_SHA256 TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA256 TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA256
TLS_DH_anon_WITH_CAMELLIA_256_CBC_SHA256 TLS_EMPTY_RENEGOTIATION_INFO_SCSV TLS_ECDH_ECDSA_WITH_NULL_SHA TLS_ECDH_ECDSA_WITH_RC4_128_SHA TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA TLS_ECDHE_ECDSA_WITH_NULL_SHA TLS_ECDHE_ECDSA_WITH_RC4_128_SHA TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA TLS_ECDH_RSA_WITH_NULL_SHA TLS_ECDH_RSA_WITH_RC4_128_SHA TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA TLS_ECDH_RSA_WITH_AES_256_CBC_SHA TLS_ECDHE_RSA_WITH_NULL_SHA TLS_ECDHE_RSA_WITH_RC4_128_SHA TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA TLS_ECDH_anon_WITH_NULL_SHA TLS_ECDH_anon_WITH_RC4_128_SHA TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA
TLS_ECDH_anon_WITH_AES_128_CBC_SHA TLS_ECDH_anon_WITH_AES_256_CBC_SHA TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHA TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA
TLS_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA TLS_SRP_SHA_WITH_AES_128_CBC_SHA TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHA TLS_SRP_SHA_DSS_WITH_AES_128_CBC_SHA
TLS_SRP_SHA_WITH_AES_256_CBC_SHA TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA TLS_SRP_SHA_DSS_WITH_AES_256_CBC_SHA TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256 TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256 TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384 TLS_ECDHE_PSK_WITH_RC4_128_SHA
TLS_ECDHE_PSK_WITH_3DES_EDE_CBC_SHA TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256
TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA384 TLS_ECDHE_PSK_WITH_NULL_SHA TLS_ECDHE_PSK_WITH_NULL_SHA256 TLS_ECDHE_PSK_WITH_NULL_SHA384 TLS_RSA_WITH_ARIA_128_CBC_SHA256
TLS_RSA_WITH_ARIA_256_CBC_SHA384 TLS_DH_DSS_WITH_ARIA_128_CBC_SHA256 TLS_DH_DSS_WITH_ARIA_256_CBC_SHA384 TLS_DH_RSA_WITH_ARIA_128_CBC_SHA256 TLS_DH_RSA_WITH_ARIA_256_CBC_SHA384
TLS_DHE_DSS_WITH_ARIA_128_CBC_SHA256 TLS_DHE_DSS_WITH_ARIA_256_CBC_SHA384 TLS_DHE_RSA_WITH_ARIA_128_CBC_SHA256 TLS_DHE_RSA_WITH_ARIA_256_CBC_SHA384
TLS_DH_anon_WITH_ARIA_128_CBC_SHA256 TLS_DH_anon_WITH_ARIA_256_CBC_SHA384 TLS_ECDHE_ECDSA_WITH_ARIA_128_CBC_SHA256 TLS_ECDHE_ECDSA_WITH_ARIA_256_CBC_SHA384
TLS_ECDH_ECDSA_WITH_ARIA_128_CBC_SHA256 TLS_ECDH_ECDSA_WITH_ARIA_256_CBC_SHA384 TLS_ECDHE_RSA_WITH_ARIA_128_CBC_SHA256 TLS_ECDHE_RSA_WITH_ARIA_256_CBC_SHA384
TLS_ECDH_RSA_WITH_ARIA_128_CBC_SHA256 TLS_ECDH_RSA_WITH_ARIA_256_CBC_SHA384 TLS_RSA_WITH_ARIA_128_GCM_SHA256 TLS_RSA_WITH_ARIA_256_GCM_SHA384
TLS_DHE_RSA_WITH_ARIA_128_GCM_SHA256 TLS_DHE_RSA_WITH_ARIA_256_GCM_SHA384 TLS_DH_RSA_WITH_ARIA_128_GCM_SHA256 TLS_DH_RSA_WITH_ARIA_256_GCM_SHA384
TLS_DHE_DSS_WITH_ARIA_128_GCM_SHA256 TLS_DHE_DSS_WITH_ARIA_256_GCM_SHA384 TLS_DH_DSS_WITH_ARIA_128_GCM_SHA256 TLS_DH_DSS_WITH_ARIA_256_GCM_SHA384
TLS_DH_anon_WITH_ARIA_128_GCM_SHA256 TLS_DH_anon_WITH_ARIA_256_GCM_SHA384 TLS_ECDHE_ECDSA_WITH_ARIA_128_GCM_SHA256 TLS_ECDHE_ECDSA_WITH_ARIA_256_GCM_SHA384
TLS_ECDH_ECDSA_WITH_ARIA_128_GCM_SHA256 TLS_ECDH_ECDSA_WITH_ARIA_256_GCM_SHA384 TLS_ECDHE_RSA_WITH_ARIA_128_GCM_SHA256 TLS_ECDHE_RSA_WITH_ARIA_256_GCM_SHA384
TLS_ECDH_RSA_WITH_ARIA_128_GCM_SHA256 TLS_ECDH_RSA_WITH_ARIA_256_GCM_SHA384 TLS_PSK_WITH_ARIA_128_CBC_SHA256 TLS_PSK_WITH_ARIA_256_CBC_SHA384
TLS_DHE_PSK_WITH_ARIA_128_CBC_SHA256 TLS_DHE_PSK_WITH_ARIA_256_CBC_SHA384 TLS_RSA_PSK_WITH_ARIA_128_CBC_SHA256 TLS_RSA_PSK_WITH_ARIA_256_CBC_SHA384
TLS_PSK_WITH_ARIA_128_GCM_SHA256 TLS_PSK_WITH_ARIA_256_GCM_SHA384 TLS_DHE_PSK_WITH_ARIA_128_GCM_SHA256 TLS_DHE_PSK_WITH_ARIA_256_GCM_SHA384
TLS_RSA_PSK_WITH_ARIA_128_GCM_SHA256 TLS_RSA_PSK_WITH_ARIA_256_GCM_SHA384 TLS_ECDHE_PSK_WITH_ARIA_128_CBC_SHA256 TLS_ECDHE_PSK_WITH_ARIA_256_CBC_SHA384
TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_CBC_SHA256 TLS_ECDHE_ECDSA_WITH_CAMELLIA_256_CBC_SHA384 TLS_ECDH_ECDSA_WITH_CAMELLIA_128_CBC_SHA256
TLS_ECDH_ECDSA_WITH_CAMELLIA_256_CBC_SHA384 TLS_ECDHE_RSA_WITH_CAMELLIA_128_CBC_SHA256 TLS_ECDHE_RSA_WITH_CAMELLIA_256_CBC_SHA384 TLS_ECDH_RSA_WITH_CAMELLIA_128_CBC_SHA256
TLS_ECDH_RSA_WITH_CAMELLIA_256_CBC_SHA384 TLS_RSA_WITH_CAMELLIA_128_GCM_SHA256 TLS_RSA_WITH_CAMELLIA_256_GCM_SHA384 TLS_DHE_RSA_WITH_CAMELLIA_128_GCM_SHA256
TLS_DHE_RSA_WITH_CAMELLIA_256_GCM_SHA384 TLS_DH_RSA_WITH_CAMELLIA_128_GCM_SHA256 TLS_DH_RSA_WITH_CAMELLIA_256_GCM_SHA384 TLS_DHE_DSS_WITH_CAMELLIA_128_GCM_SHA256
TLS_DHE_DSS_WITH_CAMELLIA_256_GCM_SHA384 TLS_DH_DSS_WITH_CAMELLIA_128_GCM_SHA256 TLS_DH_DSS_WITH_CAMELLIA_256_GCM_SHA384 TLS_DH_anon_WITH_CAMELLIA_128_GCM_SHA256
TLS_DH_anon_WITH_CAMELLIA_256_GCM_SHA384 TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_GCM_SHA256 TLS_ECDHE_ECDSA_WITH_CAMELLIA_256_GCM_SHA384
TLS_ECDH_ECDSA_WITH_CAMELLIA_128_GCM_SHA256 TLS_ECDH_ECDSA_WITH_CAMELLIA_256_GCM_SHA384 TLS_ECDHE_RSA_WITH_CAMELLIA_128_GCM_SHA256 TLS_ECDHE_RSA_WITH_CAMELLIA_256_GCM_SHA384
TLS_ECDH_RSA_WITH_CAMELLIA_128_GCM_SHA256 TLS_ECDH_RSA_WITH_CAMELLIA_256_GCM_SHA384 TLS_PSK_WITH_CAMELLIA_128_GCM_SHA256 TLS_PSK_WITH_CAMELLIA_256_GCM_SHA384
TLS_DHE_PSK_WITH_CAMELLIA_128_GCM_SHA256 TLS_DHE_PSK_WITH_CAMELLIA_256_GCM_SHA384 TLS_RSA_PSK_WITH_CAMELLIA_128_GCM_SHA256 TLS_RSA_PSK_WITH_CAMELLIA_256_GCM_SHA384
TLS_PSK_WITH_CAMELLIA_128_CBC_SHA256 TLS_PSK_WITH_CAMELLIA_256_CBC_SHA384 TLS_DHE_PSK_WITH_CAMELLIA_128_CBC_SHA256 TLS_DHE_PSK_WITH_CAMELLIA_256_CBC_SHA384
TLS_RSA_PSK_WITH_CAMELLIA_128_CBC_SHA256 TLS_RSA_PSK_WITH_CAMELLIA_256_CBC_SHA384 TLS_ECDHE_PSK_WITH_CAMELLIA_128_CBC_SHA256 TLS_ECDHE_PSK_WITH_CAMELLIA_256_CBC_SHA384
TLS_RSA_WITH_AES_128_CCM TLS_RSA_WITH_AES_256_CCM TLS_DHE_RSA_WITH_AES_128_CCM TLS_DHE_RSA_WITH_AES_256_CCM TLS_RSA_WITH_AES_128_CCM_8 TLS_RSA_WITH_AES_256_CCM_8
TLS_DHE_RSA_WITH_AES_128_CCM_8 TLS_DHE_RSA_WITH_AES_256_CCM_8 TLS_PSK_WITH_AES_128_CCM TLS_PSK_WITH_AES_256_CCM TLS_DHE_PSK_WITH_AES_128_CCM TLS_DHE_PSK_WITH_AES_256_CCM
TLS_PSK_WITH_AES_128_CCM_8 TLS_PSK_WITH_AES_256_CCM_8 TLS_PSK_DHE_WITH_AES_128_CCM_8 TLS_PSK_DHE_WITH_AES_256_CCM_8

= Authentication: e e

= RSA signatures = serpent128-cbc
= DSA-SHA1 .

arcfour
= ECDSA-SHA2 e
= Xb509-RSA signatures . casti28-che
" X509-DSA-SHA1 . deeche :
" XS09-ECDSASHAZ = arcfourl28 L | St (o) f S S H
= Key exchange: = arcfour256 CipherSUiteS
= DH explicit group SHA1 = aes128-ctr
= DH explicit group SHA2 = aesl192-ctr
= DH group 1 SHA1 = aes256-ctr
= DH group 14 SHA1 = 3des-ctr
= ECDH-nistp256-SHA2 = blowfish-ctr
= ECDH-nistp384-SHA2 = twofish128-ctr
* ECDH-nistp521-SHA2 = twofish192-ctr
= ECDH-*-SHA2 = twofish256-ctr
= GSS-groupl-SHA1-* = serpent128-ctr
= GSS-group14-SHA1-* = serpent192-ctr
= GSS explicit group SHA1 = serpent256-ctr
= RSA1024-SHA1 = idea-ctr
= RSA2048-SHA2 = cast128-ctr
= ECMQV-*-SHA2 = AEAD_AES_128_GCM
. = AEAD_AES_256_GCM
= Encryption: , _
= 3des-chc MACs:
= blowfish-chc = hmac-shal
= twofish256-cbc = hmac-shal-96
= twofish-cbc = hmac-md5
= twofish192-cbc = hmac-md5-96
= twofish128-cbc = AEAD_AES_128 GCM
= aes256-cbc = AEAD_AES_256_GCM

= aes192-cbc = hmac-sha2-256
= aesl128-cbc = hmac-sha2-512

How we’d like to analyze ciphersuites

ciphersuite 1 ciphersuite 2 ciphersuite 3

(neg) (neg) (neg)
auth, auth, auth,
(kex,) (kexy) (kex,)

et e

The reality of multi-ciphersuite usage

Ci. : ciphersuite 3
(neg) (nea) (neg)
auth, auth, ‘auth,

m X4 kex,)

et e e

Long-term key reuse across ciphersuites

Is this secure?

Even if a ciphersuite is provably secure on its
owh, it may not be secure if the long-term key is

shared between two ciphersuites.

Long-term keys in TLS

Most TLS ciphersuites are provably secure
channels (ACCE).

But this assumes that each ciphersuite uses its
own distinct long-term key.

[MVVP12] Cross-ciphersuite attack

(built on observation of Wagner & Schneier 1996)

struct {
select (ieyEchangeAlgorlthm)i struct {
case ghe_dss- opaque dh_p<1..2716-1>;
case eBE;a. : opaque dh_g<1..2716-1>;
gerver arams params; opaque dh_Ys<1..2716-1>;

digitally-signed struct {
opaque client_random[32];
opaque server_random[32];
struct {

ServerDHParams params;
ECCurveType curve_type = explicit_prime(1);

} signed_params;) -
c%ase T K T MR opaque prime_p <1..278-1>;

gerver!ﬂﬂﬁparams params, ECCurve curve;

} ServerDHParams;

digitally-signed struct { ECPoint baze? 1 9515
opaque client_random[32]; opaque orfer -;1 2*8:1>-
opaque server_random[32]; opaque Co'a:tZE 2;é - ;

opaque poin ..278-1>;

ServerECDHParams params;
} signed_params;
} ServerKeyEx

} ServerECDHParams;

2. Some valid ServerECDHParams

binary strings are also valid WEAK
ServerDHParams binary strings.

1. No "type" information.

[MVVP12] Cross-ciphersuite attack

(built on observation of Wagner & Schneier 1996)

=> TLS not secure with long-term key reuse.

=> ACCE security of a ciphersuite in isolation
does not imply security with long-term key
reuse.

Long-term keys in SSH

In SSH, the thing that is sighed contains an
unambiguous identification of the intended

ciphersuite.

We might hope to be able to prove SSH secure
even with key reuse across ciphersuites.

Is SSH secure?

N SSH v2 Some Attack on Truncated
standardized ~— variant of ~ SSH SSH

N _ SSH “__ encryption, = handshake

© S encryptionis O fixed version ¥ using signed

8 8 secure v js secure g Diffie-

N QN [BKNO4] [APWO9, PW10] ¢y Hellmanis a

|
%
secure AKE
o [Wil14]
N

Signhed-DH SSH is a secure ACCE

Theorem: Assuming
=the sighature scheme is secure,
"the CDH problem is hard,
=the hash function is random,

=and the encryption scheme is a secure buffered
stateful authenticated encryption scheme,

then sighed-DH SSH is a secure ACCE protocol.

How can we prove it secure even with long-term
key reuse across ciphersuites?

different CDH groups, different encryption schemes, etc.

Provable security of long-term key reuse

Goal: Generic composition theorem:
If 2 individual ciphersuites are separately secure,
then they are collectively secure even if long-term
keys are reused across ciphersuites.

" Impossible: TLS cross-ciphersuite attack.

Proof approach:
Guess the target ciphersuite
Use ACCE challenger for target ciphersuite
Simulate all other ciphersuites

Main problem: how to correctly simulate private
key operations of other ciphersuites that re-use
long terms key

Provable security of long-term key reuse

Revised goal: Generic composition theorem:

If 2 individual ciphersuite are separately secure
under additional conditions, then they are
collectively secure even if long-term keys are
reused across ciphersuites.

Technical approach

1. Define multi-
ciphersuite
ACCE security

Idea: adversary

shouldn't be helped if
he gets signhatures on
"unrelated" messages

2. Slightly open
up individual
ACCE definition:
"ACCE with
auxiliary oracle"

4. Prove SSH
sighed-DH
satisfies ACCE
with auxiliary
oracle

3. Thm:
collection of
ciphersuites that
are individually
ACCE-secure
with compatible
auxiliary oracles

=>
multi-ciphersuite
security.

ACCE with auxiliary oracle

Idea: adversary shouldn't be helped if he gets
signatures on "unrelated” messages

Auxiliary oracle aux = "get sighatures”

Predicate pred = "unrelated messages"”

=e.g. unambiguous ciphersuite description part of
sighed data structure

Multi-ciphersuite composition theorem

CS. secure Thm: Suite of mutually
witih aux, and pred compatible individually
t t secure ciphersuites is

multi-ciphersuite secure.
CS, secure

with aux, and pred, Proof approach:

Guess the target
ciphersuite

Use ACCE-aux challenger
for target ciphersuite

Simulate all other

Two ciphersuites are
"compatible" if

= CS, can be simulated using ciphersuites, using aux
aux, without violating oracle when needed for
pred, private key operations

= vice versa = Underlying challenger remains

"fresh" since pred not violated

SSH multi-ciphersuite conclusions

Theory

Definition for security
of multi-ciphersuite
protocols.

Generic theorem on
when it is safe to reuse
long-term keys across
individually secure
ciphersuites.

Practice

Confidence in sighed-
DH SSH ciphersuites,

even if the same long-
term keys are reused

across ciphersuites.

= ... and even when reused
with unambiguously
independent protocols.

Two approaches to multi-ciphersuite

security

"Proving the TLS handshake
secure (as it is)" [BFKPSZ14]

Multi-ciphersuite

{KEMs}

X
{sighature algs}
X
{PRFs}

X

Our approach

Multi-ciphersuite

CS, (ACCE with aux, & pred,)
+

CS, (ACCE with aux, & pred,)
+

CS; (ACCE with aux, & predy,)
+

Summary

Theory

Provable security of
single ciphersuites in
isolation doesn’t imply
security in complex
settings:

= TLS renegotiation attack
= multi-ciphersuite security

Can extend ACCE security
models for more complex
functionality

By opening up ACCE
security models, can
prove more generic
composition theorems

Practice

Confidence in TLS
standardized
renegotiation fixes.

Confidence in SSH
signed-DH ciphersuites
in isolation or with long-
term key reuse.

Questions

Should we be trying to cryptographically
analyze these more complex properties?

Is the monolithic ACCE framework the right
approach?

Is ACCE the right approach?

No

Big definition

Monolithic security
hotion

Most proofs haven't
been very modular

No

Secure channel [CKO1]
a bit cleaner

Is ACCE equivalent (in
any sense) to CKO1
secure channel?

= Preliminary investigations
suggest not: authenticated
encryption property weaker
in CKO1 secure channel
than ACCE

Is ACCE the right approach?

No

Advanced functionality

(renegotiation, multi-

ciphersuite) doesn't

follow from standalone

ACCE

= Need variants that "open
up" ACCE definition

= Need to re-prove security of
individual ciphersuites

often quite easy given
original ACCE proof

still undesirable

No

Many different variants
of ACCE

= sLHAE (TLS) vs BSAE (SSH)
= forward secrecy

= mutual vs one-way auth.

= public key
vs. pre-shared key
vs. password

Is ACCE the right approach?

But...
It allowed us to break ACCE / secure channel
through a decade of is the "interface" that

barriers in proving

security of full TLS cryptography presents
protocol. to the security world
Adapted for proving many "Send it over a secure
real-world protocols channel”

= TLS-DHE, TLS-RSA, TLS-DH,
TLS-PSK, EMV, SSH, QUIC

= Used by 2 5 independent

research teams Cryptographers: . .

: : T end point oY
Unlikely to be S|-mpl_|f|able practitioners:
= "Surely we can simplify key starting point

exchange models”

Gap between theory (provable

- . Provable
security results) and practice security of
(attacks). advanced

properties
of TLS and
SSH
——— ﬁw =

Douglas Stebila

Qu Queensland University
of Technology

Extend provable security models and
results to address TLS renegotiation

o . . Slides and
and SSH multi-ciphersuite security. papers
o s handshake,s = e ?Te[vse)r (apspﬁxiron) ciphersuite 1 ciphersuite 2 ciphersuite 3
TLS recordlayer, (neg) — l’ng)‘\ - ’(.‘Tg)
‘EB Application aUth1 \ auth1 N aUth‘
B ey wexy(ken
Tconte) (1cont. | (1 confy |
TLS recordlayerys || int y Y J
| | 1) \) lntz) \J Int1 J

m, 1]] m, melm,

http://www.douglas.stebila.ca/research/presentations/

