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a.k.a.	  non-‐interac3ve	  secure	  2-‐party	  computa3on	  
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self-‐destruct	  in	  5	  

seconds”	  
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lock	  and	  open	  the	  
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23.	  
	  
	  
If	  you	  give	  up	  and	  
go	  back	  to	  bed,	  
turn	  to	  page	  40.”	  
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•  Electronic	  cash	  

•  SoNware	  copy	  protec3on	  

•  Digital	  rights	  management	  



Therefore,	  classical	  one-‐3me	  
programs	  are	  not	  possible	  in	  
the	  plain	  model	  (even	  if	  we	  
allow	  computa3onal	  
assump3ons).	  

Classical	  programs	  can	  be	  copied	  



Hardware	  token	  model:	  
assume	  hardware	  tokens	  called	  one-‐3me	  memories	  (OTMs)	  



Hardware	  token	  model:	  
assume	  hardware	  tokens	  called	  one-‐3me	  memories	  (OTMs)	  

Why	  use	  OTMs?	  
•  Generic	  objects	  
•  Independent	  of	  protocol	  
•  Independent	  of	  input	  
•  Could	  be	  mass-‐produced	  



Classical	  one-‐3me	  programs	  in	  the	  
hardware	  token	  model	  

Goal:	  a	  compiler	  that	  transforms	  (f,x)	  into	  a	  one-‐
3me	  program.	  
1.  Goldwasser,	  Kalai,	  G.	  Rothblum	  (CRYPTO	  ‘08):	  

One-‐3me	  programs	  in	  the	  string-‐OTM	  model,	  
–  computa3onal	  security	  
–  standalone	  security	  defini3on	  

2.  Goyal,	  Ishai,	  Sahai,	  Venkatesan,	  Wadia	  (TCC	  ‘10):	  
One-‐3me	  programs	  in	  the	  bit-‐OTM	  model,	  	  
–  sta3s3cal	  (informa3on-‐theore3c)	  security	  
–  universal	  composability	  (UC)	  se`ng	  



1.  The	  no-‐cloning	  theorem	  prevents	  the	  basic	  copying	  aaack.	  
Could	  OTPs	  be	  possible	  in	  the	  plain	  quantum	  model?	  

2.  OTPs	  for	  quantum	  channels	  need	  to	  handle	  entangled	  
inputs:	  

	  

Quantum	  twists	  



Our	  ques3ons	  /	  results	  

1.  Does	  quantum	  informa3on	  enable	  one-‐3me	  
programs	  for	  classical	  func3ons	  in	  the	  plain	  model?	  	  
–  NO!	  (for	  all	  but	  “trivial”	  func3ons)	  

2.  Does	  quantum	  informa3on	  enable	  one-‐3me	  
programs	  for	  quantum	  channels	  in	  the	  plain	  model?	  	  
–  NO!	  (for	  all	  but	  “trivial”	  channels)	  

3.  Do	  quantum	  one-‐3me	  programs	  exist	  for	  quantum	  
channels	  in	  the	  bit-‐OTM	  model?	  	  
–  YES!	  (for	  all	  channels,	  with	  sta3s3cal	  UC	  security)	  	  
–  Main	  techniques:	  

•  new	  quantum	  authen3ca3on	  code	  
•  method	  to	  compute	  on	  authen3cated	  data.	  



Related	  cryptographic	  tasks	  
1.  SoNware	  copy-‐protec3on	  

–  Can	  be	  evaluated	  mul3ple	  3mes,	  but	  not	  “split”	  or	  “copied”	  into	  two	  
parts	  that	  allow	  separate	  execu3ons.	  	  

–  Clearly	  impossible	  with	  classical	  informa3on	  alone	  
–  OTPs	  provide	  a	  solu3on	  	  
–  Aaronson	  (CCC	  ‘09):	  solu3on	  in	  the	  plain	  model	  using	  quantum	  

informa3on.	  
–  Open	  ques3on:	  general	  quantum	  soNware	  copy-‐protec3on	  based	  on	  

standard	  cryptographic	  assump3ons.	  	  

2.  Program	  obfusca3on	  
–  Can	  be	  evaluated	  mul3ple	  3mes,	  but	  the	  “code”	  of	  the	  program	  does	  

not	  leak	  any	  informa3on	  beyond	  what	  can	  be	  learned	  by	  running	  the	  
program.	  	  

–  Impossible	  with	  classical	  informa3on	  alone	  (Barak,	  Goldreich,	  
Impagliazzo,	  Rudich,	  Sahai,	  Vadhan,	  Yang,	  CRYPTO	  ’01).	  	  

–  OTPs	  provide	  a	  solu3on	  	  
–  Open	  ques3on:	  quantum	  program	  obfusca3on	  (in	  the	  plain	  model).	  	  



1.	  IMPOSSIBILITY	  
Quantum	  one-‐3me	  programs	  do	  not	  
exist	  in	  the	  plain	  model	  
	   	   	   	  …	  except	  for	  some	  trivial	  cases	  



One-‐3me	  program	  for	  	  	  	  	  :	  sender	  reveals	  	  	  	  	  	  	  .	  
	  
This	  is	  “secure”	  because	  a	  single	  query	  to	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  will	  also	  reveal	  	  	  	  	  	  	  	  .	  	  	  
	  
	  
	  
	  
	  
	  
	  	  	  	  	  	  	  	  	  
	  
	  

“Trivial”	  one-‐3me	  programs	  



(	  

Theorem:	  If	  f	  is	  unlockable,	  	  
then	  f	  has	  a	  secure	  OTP	  in	  the	  
plain	  classical	  model.	  	  
	  
Theorem:	  If	  f	  has	  a	  secure	  OTP	  	  
in	  the	  plain	  quantum	  model,	  	  
then	  f	  is	  unlockable.	  	  

	  
	  

Unlockable	  
Trivial	  OTP	  in	  plain	  model	  

Not	  unlockable	  
No	  OTP	  in	  plain	  quantum	  model	  

Unlockable	  func3ons	  
A function f is unlockable if there

exists a key input y0 and a recovery

algorithm A that allows computation

of f(x, y) for any y.



Defini3on	  of	  quantum	  OTP	  

Functionality 3 Ideal functionality FOTP
� for a quantum channel � : (A,B) ! C.

1. Create: Upon input register A from the sender, send create to the receiver and store the
contents of register A.

2. Execute: Upon input register B from the receiver, evaluate � on registers A,B and send the
contents of the output register C to the receiver. Delete any trace of this instance.

Moreover, they are non-reactive since they interact with the sender and the receiver in a single
round. Reactive functionalities are more general, potentially having several rounds of inputs and
outputs and maintaining state between rounds. In Section 2.4 we consider an ideal functionality for
bounded reactive classical one-time programs; the ideal functionality for bounded-reactive OTPs is
specified inAppendix A.

2.3 Alternative view of QOTPs

It will sometimes be helpful, for example in Section 6, for us to have an alternative, functional view
of QOTPs, or the following equivalent.

A non-interactive protocol for evaluation of a channel � : (A,B) ! C consists of (i) an encoding
channel enc : A ! P applied by the sender on its input A that prepares a program state P, and (ii)
a decoding channel dec : (P,B) ! C applied by the receiver on the program state P and its input B
such that dec � enc and � are indistinguishable. This is represented diagrammatically in Figure 1.

(a) Ideal world

⇢ �
A

B
C

(b) Real world

⇢
encA

dec
B

P

C ⇡ �(⇢)

Figure 1: (a) In the ideal world, the receiver obtains the output of the ideal functionality for � on
arbitrary input registers (A,B). (b) In the real world, encoding and decoding maps implement the
functionality, namely dec � enc ⇡ �.

As noted, by the completeness of the dummy-adversary [Unr10], it is su�cient, in order
to establish UC security, to consider only the case of the dummy-adversary who forwards the
program register, P, to the environment. Thus, UC security can be established by exhibiting a
simulator that can re-create a state that is indistinguishable from the joint state (enc⌦ B)(⇢) of
registers (P,B), using only the ideal functionality; recall indistinguishability is from the perspective
of the environment, and could be perfect, statistical, or computational as appropriate. The
corresponding channels are depicted in Figure 2. Here, the simulator (sim1, sim2) consists of
channels sim1 : B ! (B0,M) and sim2 : (C,M) ! (P,B), where M is a private memory register for
the simulator; security holds if the channels sim2 �� � sim1 and enc⌦ B are indistinguishable.

2.4 Classical one-time programs

Our construction relies heavily on classical OTPs, the construction of which is given by Goyal et al. [GIS+10]:

Theorem 3. Let f be a non-reactive, sender-oblivious, polynomial-time computable classical two-
party functionality. Then there exists an e�cient, non-interactive protocol which statistically
classical-UC-emulates FOTP

f

in the FOTM-hybrid model.

9

•  	  	  	  :	  public	  channel	  
•  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  :	  sender	  &	  
receiver	  input	  

•  enc:	  creates	  program	  
state	  for	  sender’s	  input	  

•  P:	  program	  state	  
•  dec:	  run	  program	  state	  
with	  receiver’s	  input	  

•  C:	  output	  

�
⇢ = (A,B)



Security	  of	  OTP	  

Real	  world	  

(a) Real world

⇢

encA

BB

P

(b) Simulator

⇢

sim1B

�A
B0

sim2

M

C

P

B

Figure 2: (a) The sender prepares the program register P by applying enc to A. The sender cannot
touch B. (b) A simulator (sim1, sim2) should be able to re-create an indistinguishable state of (P,B)
using only the ideal functionality �.

In Appendix A, we use straightforward techniques to extend this result to sender-oblivious,
polynomial-time computable, bounded reactive classical two-party functionalities. The main result
on reactive OTPs, as used in our construction in Section 3, is:

Corollary 3.1. There exists a non-interactive protocol � that statistically classical-UC-emulates
FBR-OTP
g1,...g`

in the FOTM-hybrid model.

3 Constructing quantum OTPs from OTMs

We now state our main possibility theorem which establishes non-interactive unconditionally secure
quantum computation using OTM tokens.

Theorem 4. Let � be non-reactive, sender-oblivious polynomial-time quantum computable two-party
functionality. Then there exists an e�cient, quantum non-interactive protocol which statistically
quantum-UC-emulates FOTP

� in the case of a corrupt receiver, in the FOTM-hybrid model.

The proof of Theorem 4 follows directly from Theorem 5 below, together with Corollary 3.1, the
quantum lifting theorem, and Lemma 2.

Theorem 5. Let � be a non-reactive, sender-oblivious polynomial-time quantum computable two-
party functionality. Then there exists an e�cient, statistically quantum-UC-secure non-interactive
protocol which realizes FOTP

� in the case of a corrupt receiver, in the FBR-OTP-hybrid model.

The proof of Theorem 5 is presented in the following sections, which we briefly highlight here; a
detailed outline follows in the next section.

1. Section 4 presents our new trap authentication scheme, a type of quantum authentication
code. We show how perform a universal set of quantum gates (X, Y , Z, cnot, i-shift and
⇡/8 phases, and H) on authenticated data without knowing the authentication key.

2. Section 5 presents our protocol for quantum one-time programs and the proof its security.
Since computation on authenticated data requires updates to be performed that are dependent
on the authentication key, our protocol uses a reactive classical one-time program (based
on one-time memories) to allow the receiver to non-interactively implement the required
operations to correctly compute on the sender’s authenticated data.

The following sections 3.1–3.5 provide an overview of the proof and related techniques.

3.1 Quantum authentication codes

A quantum authentication scheme consists of procedures for encoding and decoding quantum
information with a secret classical key k such that an adversary with no knowledge of k who tampers

10
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In	  this	  model,	  a	  protocol	  is	  secure	  if	  the	  joint	  state	  of	  registers	  
(P,B)	  (before	  dec	  is	  applied)	  can	  be	  re-‐created	  by	  a	  simulator	  
(sim1,	  sim2)	  that	  has	  one-‐shot	  access	  to	  channel	  	  	  	  .	  	  �
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In	  this	  model,	  a	  protocol	  is	  secure	  if	  the	  joint	  state	  of	  registers	  
(P,B)	  (before	  dec	  is	  applied)	  can	  be	  re-‐created	  by	  a	  simulator	  
(sim1,	  sim2)	  that	  has	  one-‐shot	  access	  to	  channel	  	  	  	  .	  	  �

Defini3on	  in	  UC	  framework	  
-‐  talk	  focuses	  on	  perfect	  case	  
-‐  results	  hold	  for	  sta3s3cal	  and	  
computa3onal	  indis3nguishability	  



Unlockable	  channels	  
A channel � is unlockable if there

exists a key state ⇠0 and a recovery

algorithm A that allows computation

of �(⇢) for any ⇢.

⇢ ⇠0

�A
B

A

C

K
B

C

output ⇡ �(⇢)

Figure 6: A channel � is unlockable if there exists a key state ⇠0 and a recovery algorithm A that
allows computation of �(⇢) for any ⇢.

6.1 Definition of unlockability

Informally, a function or channel is unlockable if there is a key2 input for the receiver that unlocks
enough information to fully simulate the map.

Definition 8 (Unlockable channel). A channel � : (A,B) ! C is unlockable if there exists a register
K, a key state ⇠0 of (B,K) and a recovery algorithm (i.e., channel) A : (C,K,B) ! C with the
property that A � (�0 ⌦ B) ⇡ �, where the channel �0 is specified by

�0 : A ! (C,K) : ⇢
A

7! (�⌦ K)(⇢A ⌦ ⇠0).

Here, ⇡ can denote perfect, statistical, or (for polynomial-time uniform families of channels {�
n

})
computational indistinguishability; in all cases, the channels �0 and A must have circuits of size
polynomial in the size of the circuit for �. See Figure 6 for a graphical depiction of unlockability.

For completeness let us note that, in the classical case, a function f : A⇥B ! C is unlockable
if there exists a key input b0 2 B and a recovery algorithm A : C ⇥B ! C such that, for all a 2 A
and b 2 B, it holds that f(a, b) = A(f(a, b0), b). Intuitively, an unlockable classical function admits
an algorithm that can compute all values of f(a, ·) given a one-time program for f(a, ·). But this is
okay because a simulator given one-shot oracle access to f(a, ·) can also compute f(a, b) for all b:
this function is “learnable” in one shot and so a simulator can do everything any algorithm can.

Simple examples of unlockable channels include all unitary channels of the form � : X 7! UXU⇤

for some unitary U and all constant channels of the form � : X 7! Tr(X)� for some fixed state �.
Simple examples of unlockable functions include permutations.

6.2 Trivial one-time programs for unlockable channels

We can now see that unlockable channels have OTPs; but trivially so.

Theorem 9 (OTPs for unlockable channels). Let � : (A,B) ! C be a channel specified by a circuit.
If � is unlockable then there exists an e�cient, non-interactive protocol which quantum-UC-emulates
FOTP
� in the plain quantum model. This holds in the perfect, statistical and computational cases.

Proof. We first construct a protocol that implements the functionality of FOTP
� in the plain quantum

model. To show that the protocol is secure, it su�ces according to the discussion in Section 2.3 to
consider just the dummy adversary and show that there exists a simulator which, with access only
to the ideal functionality, emulates the protocol and the dummy adversary.

The protocol is simple.

2Note we use “key” not in the cryptographic sense of a secret key, but in the metaphorical sense of something that
unlocks a lock.
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Theorem:	  If	  	  	  	  	  is	  unlockable,	  	  
then	  it	  has	  a	  secure	  QOTP	  	  
in	  the	  plain	  quantum	  model.	  	  
	  
Theorem:	  If	  	  	  	  	  has	  a	  secure	  QOTP	  
in	  the	  plain	  quantum	  model,	  	  
then	  it	  is	  unlockable.	  	  

	  
	  

Unlockable	  
Trivial	  OTP	  in	  plain	  model	  

Not	  unlockable	  
No	  OTP	  in	  plain	  quantum	  model	  

�

�

(3ghter	  result	  than	  in	  proceedings	  version)	  



2.	  POSSIBILITY	  
All	  quantum	  channels	  admit	  a	  UC-‐secure	  
quantum	  one-‐3me	  program	  in	  the	  
classical	  one-‐3me	  memory	  model.	  



Overview:	  OTPs	  for	  quantum	  channels	  
in	  the	  OTM	  model	  

Main	  idea:	  “tamper-‐proof”	  computa+on	  

The	  QOTP	  includes	  
–  the	  sender’s	  input	  
–  some	  auxiliary	  qubits	  

encoded	  in	  a	  “tamper-‐proof”	  but	  
malleable	  way:	  
•  the	  receiver	  is	  allowed	  to	  perform	  

gates	  on	  the	  encoded	  data.	  	  
At	  the	  end,	  the	  receiver	  gets	  the	  
output	  as	  long	  as	  he	  performed	  the	  
sequence	  of	  gates	  as	  instructed.	  	  



Main	  tools	  
quantum	  authen3ca3on	  
codes	  	  
=	  “tamper-‐proof	  encoding”	  
	  
Uses	  a	  classical	  key;	  detects	  
tampering	  with	  high	  
probability.	  
	  
Quantumly,	  authen3ca3on	  
implies	  encryp3on.	  
•  Barnum,	  Crépeau,	  Goaesman,	  

Smith,	  Tapp	  (FOCS	  2002)	  

	  
	  
	  

quantum	  compu3ng	  on	  
authen3cated	  data	  (QCAD)	  	  
=	  performing	  gates	  on	  
“tamper-‐proof”	  encodings.	  
	  
QCAD	  normally	  requires	  
classical	  interac3on	  with	  the	  
sender;	  we	  subs3tute	  this	  
with	  a	  classical,	  UC-‐secure	  
OTP	  as	  given	  by	  prior	  work.	  



Quantum	  authen3ca3on	  codes	  

We	  use	  an	  encode	  +	  Pauli	  encrypt	  scheme.	  
•  Pauli	  encryp3on	  maps	  an	  arbitrary	  aaack	  into	  
a	  mixture	  of	  Pauli	  aaacks	  (Pauli	  twirl)	  

•  So	  all	  we	  need	  is	  a	  family	  of	  codes	  that	  is	  
secure	  against	  Pauli	  aaacks.	  	  



Trap	  authen3ca3on	  code	  

Let	  E	  be	  self-‐dual	  CSS	  code	  
of	  distance	  d,	  encoding	  1	  
logical	  qubit	  into	  n	  physical	  
qubits.	  

Theorem:	  The	  family	  of	  trap	  
codes	  is	  (2/3)d/2–secure	  
against	  Pauli	  aaacks.	  
	  
(Trap	  codes	  first	  used	  
implicitly	  by	  Shor	  and	  
Preskill	  (PRL	  ‘00).)	  
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Need	  a	  method	  to	  
perform	  gates	  on	  
authen3cated	  (and	  
encrypted)	  data.	  	  



Gadgets	  for	  trap	  code	  universal	  QCAD	  

Techniques	  inspired	  by	  
fault-‐tolerant	  quantum	  
computa3on.	  
	  	  
QCAD	  originally	  established	  
for	  the	  signed	  polynomial	  
authen3ca3on	  code	  	  
•  (Ben-‐Or,	  Crépeau,	  Goaesman,	  

Hassidim,	  Smith,	  FOCS	  2006)	  

Also	  known	  for	  the	  Clifford	  
authen3ca3on	  code	  
•  (Dupuis,	  Nielsen,	  Salvail	  	  CRYPTO	  ’12)	  

1.  Measurement:	  	  	  	  	  
•  computa3onal	  basis	  

measurement	  of	  logical	  
data	  

•  =	  qubit-‐wise	  measurements	  
of	  physical	  data	  	  +	  classical	  
decoding	  

2.  Pauli	  gates:	  	  
–  receiver	  does	  nothing	  
–  sender	  updates	  the	  Pauli	  

encryp3on	  key	  



Gadgets	  for	  trap	  code	  universal	  QCAD	  
3.  CNOT:	  
–  Bitwise	  CNOT	  
–  Simple	  Pauli	  key	  updates	  

4.  i	  gate	  
–  Auxiliary	  (magic	  state)	  
prepared	  by	  the	  sender	  

–  one-‐way	  communica3on	  
to	  the	  sender	  required	  

5.  π/8	  gate	  
–  Like	  i-‐gate,	  but	  sender	  
decodes	  result	  and	  
returns	  it	  to	  the	  receiver.	  	  

	  
	  

6.  Hadamard	  
–  Use	  gate	  teleporta3on	  
(Goaesman	  and	  Chuang)	  

	  



Encoding	  and	  decoding	  gadgets	  

How	  does	  the	  receiver	  get	  
an	  authen3cated	  version	  
of	  his	  input?	  
•  Use	  gate	  teleporta3on!	  

How	  does	  the	  received	  get	  
an	  unauthen3cated	  
version	  of	  the	  output?	  
•  Use	  gate	  teleporta3on!	  
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Figure 4: Circuits for teleporting through authentication and de-authentication

protocol for c-Ũ (see Section 5.2.3) so we have elected to present only the protocol for c-Ũ in this
paper. Whether or not the controlled-U is necessary for our somewhat simpler security proof is an
interesting unresolved question.

5.2.2 Specification

Let r be the number of gates in c-Ũ that require magic states. After the parties have received their
input registers A,B, a non-interactive protocol for c-Ũ consists of a single message from the sender
to the receiver. This message consists of the following objects:

1. Quantum registers Ã,Bin, B̃in,Bout, B̃out, Ẽ, M̃ = (M̃1, . . . , M̃r

) prepared in specific states de-
scribed in Protocol 2 below.

2. An (r+1)-round reactive classical one-time program (BR-OTP) described in Protocol 3 below.
In order to prepare this message, a code E 2 E and encryption Paulis P, S are chosen uniformly at
random. The Pauli S acts on B̃out and the Pauli P acts on (Ã, B̃in, Ẽ, M̃). (Here and throughout the
paper we adopt the convention that the portion of a multi-register Pauli acting on a single register
is denoted by the register name appearing in a subscript. For example, the portion of P acting
on M̃ is denoted PM̃ and it holds that P = PÃ ⌦ PB̃in

⌦ PẼ ⌦ PM̃.) The registers are prepared as
described in Protocol 2 and Figure 4.

Protocol 2 Message preparation for sender

(Bin, B̃in): Teleport-through-authentication state PB̃in
E|�+i. (See Figure 4(a).)

(B̃out,Bout): Teleport-through-de-authentication state obtained by discarding the syndrome
registers of E⇤S|�+i. (See Figure 4(b).)

Ã: Authenticated input state. Obtained by applying PÃE to the input register A.
Ẽ: Authenticated ancilla PẼE|0i|oni.
M̃: Authenticated magic states PM̃E|µi where |µi = |µ1i · · · |µr

i and |µ1i, . . . , |µr

i are
the r magic states required for c-U .

In addition to these registers, the sender prepares an (r + 1)-round BR-OTP to act as described
in Protocol 3.

This QOTP could be mass-produced The state of the authenticated register Ã depends upon
the state of the sender’s input register A. But the remaining registers could all be prepared (or
mass-produced) before A is received. Furthermore, the BR-OTP also does not depend upon A, but
it does depend upon the authentication key for Ã. This key could be chosen in advance, in which
case the BR-OTP could also be mass-produced before A is received.
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to the receiver. This message consists of the following objects:
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Protocol	  for	  QOTP	  for	  	  	  	  	  

To	  prepare	  a	  QOTP:	   To	  use	  a	  QOTP:	  

1.  Teleport	  receiver’s	  input	  
through	  encoding	  gadget.	  	  

2.  Perform	  target	  circuit	  using	  
QCAD.	  

3.  Teleport	  receiver’s	  output	  
through	  decoding	  gadget.	  	  

4.  All	  classical	  interac3on	  is	  
done	  via	  the	  classical	  OTP.	  	  

•  sender’s	  	  
input	  
encoded	  

•  encoding	  
gadget	  

•  decoding	  
gadget	  

•  classical	  OTP	  implemen3ng	  
interac3on	  for	  QCAD	  
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Simulator	  for	  security	  proof	  

Simulator	  prepares	  fake	  QOTP	   Simulator	  runs	  the	  protocol	  

1.  Extract	  receiver’s	  input	  using	  
the	  first	  half	  of	  “encoding	  
gadget”.	  	  

2.  Use	  this	  input	  as	  input	  into	  
the	  ideal	  func3onality.	  

3.  Teleport	  the	  output	  of	  the	  
ideal	  func3onality	  through	  
second	  half	  of	  “encoding	  
gadget”.	  	  

4.  Con3nue	  protocol	  as	  in	  the	  
real	  world,	  ensuring	  same	  
output	  occurs	  in	  real	  and	  
ideal	  se`ng.	  

•  sender’s	  	  
input	  
encoded	  

•  encoding	  
gadget	  

•  decoding	  
gadget	  

•  classical	  OTP	  implemen3ng	  
interac3on	  for	  QCAD	  

Auth
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Auth

Proof:	  
The	  final	  states	  held	  by	  the	  
environment	  in	  the	  real	  and	  ideal	  
world	  are	  close	  in	  trace	  distance.	  	  
	  
Proof	  applies	  to	  any	  encode-‐
encrypt	  authen3ca3on	  scheme	  
that	  admits	  QCAD.	  
	  
	  
	  
	  
	  
	  



Summary	  

1.  Quantum	  informa3on	  does	  not	  allow	  for	  QOTPs	  of	  
classical	  func3ons	  or	  quantum	  channels	  in	  the	  plain	  
model.	  
–  except	  for	  trivial	  “unlockable”	  func3ons	  

2.  UC-‐secure	  protocol	  for	  QOTPs	  for	  quantum	  channels	  
in	  the	  classical	  bit	  one-‐3me	  memory	  (OTM)	  model.	  
–  new	  quantum	  authen3ca3on	  code:	  “trap	  scheme”	  
–  method	  to	  compute	  on	  authen3cated	  data	  

Open	  ques3on:	  possibility/impossibility	  of	  quantum	  
program	  obfusca3on.	  


