
2012/11/02
QUT

ON THE SECURITY OF
TLS RENEGOTIATION

Douglas Stebila

European Network of
Excellence in Cryptology II
(ECRYPT II)

Australian Technology
Network–German
Academic Exchange Service
(ATN-DAAD) Joint Research
Co-operation Scheme

Joint work with Florian Giesen & Florian Kohlar, Ruhr-Universität Bochum

1.  What is TLS?
Is TLS secure?

2.  What is TLS renegotiation?
Attacks on TLS renegotiation

3.  Modelling security of renegotiation
Analysing security of TLS renegotiation fixes

ON THE SECURITY OF
TLS RENEGOTIATION

TLS

¡  Depends on who you ask

¡  Users:
§  TLS? What’s that?
§  SSL? Huh?
§  HTTPS? That’s the lock icon, right?

¡  Cryptographers:
§  “TLS is perhaps the Internet’s most widely used security protocol”
§  ‘A key exchange and encryption protocol’
§  ‘RSA key transport or signed Diffie–Hellman combined with

(authenticated) encryption’

WHAT IS TLS?

”
“ The Transport Layer Security

protocol provides
communications privacy over the

Internet. The protocol allows
client/server applications to

communicate in a way that is
designed to prevent

eavesdropping, tampering, or
message forgery.

The TLS
Protocol
Vers ion 1 .0
RFC 2246

WHAT IS
TLS?

In reality:
¡ 5 protocol versions
¡ vast array of standards
¡ many implementations!
¡ 300+ combinations of

cryptographic primitives
¡ different levels of

security
¡ different modes of

authentication
¡ additional functionality:

§ alerts & errors
§  session resumption
§  renegotiation
§  compression

WHAT IS TLS?

1995! 1996! 1999! 2006! 2008!

https://www.trustworthyinternet.org/ssl-pulse/
August 10, 2012

The current approved version of TLS is version 1.2, which is specified in:
¡  RFC 5246: “The Transport Layer Security (TLS) Protocol Version 1.2”.
The current standard replaces these former versions, which are now considered obsolete:
¡  RFC 2246: “The TLS Protocol Version 1.0”.
¡  RFC 4346: “The Transport Layer Security (TLS) Protocol Version 1.1”.
as well as the never standardized SSL 3.0:
¡  RFC 6101: “The Secure Sockets Layer (SSL) Protocol Version 3.0”.
Other RFCs subsequently extended TLS.
Extensions to TLS 1.0 include:
¡  RFC 2595: “Using TLS with IMAP, POP3 and ACAP”. Specifies an extension to the IMAP, POP3 and ACAP services that allow the server and

client to use transport-layer security to provide private, authenticated communication over the Internet.
¡  RFC 2712: “Addition of Kerberos Cipher Suites to Transport Layer Security (TLS)”. The 40-bit cipher suites defined in this memo appear only

for the purpose of documenting the fact that those cipher suite codes have already been assigned.
¡  RFC 2817: “Upgrading to TLS Within HTTP/1.1”, explains how to use the Upgrade mechanism in HTTP/1.1 to initiate Transport Layer Security

(TLS) over an existing TCP connection. This allows unsecured and secured HTTP traffic to share the same well known port (in this case, http:
at 80 rather than https: at 443).

¡  RFC 2818: “HTTP Over TLS”, distinguishes secured traffic from insecure traffic by the use of a different 'server port'.
¡  RFC 3207: “SMTP Service Extension for Secure SMTP over Transport Layer Security”. Specifies an extension to the SMTP service that allows

an SMTP server and client to use transport-layer security to provide private, authenticated communication over the Internet.
¡  RFC 3268: “AES Ciphersuites for TLS”. Adds Advanced Encryption Standard (AES) cipher suites to the previously existing symmetric ciphers.
¡  RFC 3546: “Transport Layer Security (TLS) Extensions”, adds a mechanism for negotiating protocol extensions during session initialisation

and defines some extensions. Made obsolete by RFC 4366.
¡  RFC 3749: “Transport Layer Security Protocol Compression Methods”, specifies the framework for compression methods and the DEFLATE

compression method.
¡  RFC 3943: “Transport Layer Security (TLS) Protocol Compression Using Lempel-Ziv-Stac (LZS)”.
¡  RFC 4132: “Addition of Camellia Cipher Suites to Transport Layer Security (TLS)”.
¡  RFC 4162: “Addition of SEED Cipher Suites to Transport Layer Security (TLS)”.
¡  RFC 4217: “Securing FTP with TLS”.
¡  RFC 4279: “Pre-Shared Key Ciphersuites for Transport Layer Security (TLS)”, adds three sets of new cipher suites for the TLS protocol to

support authentication based on pre-shared keys.
Extensions to TLS 1.1 include:
¡  RFC 4347: “Datagram Transport Layer Security” specifies a TLS variant that works over datagram protocols (such as UDP).
¡  RFC 4366: “Transport Layer Security (TLS) Extensions” describes both a set of specific extensions and a generic extension mechanism.
¡  RFC 4492: “Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS)”.
¡  RFC 4507: “Transport Layer Security (TLS) Session Resumption without Server-Side State”.
¡  RFC 4680: “TLS Handshake Message for Supplemental Data”.
¡  RFC 4681: “TLS User Mapping Extension”.
¡  RFC 4785: “Pre-Shared Key (PSK) Ciphersuites with NULL Encryption for Transport Layer Security (TLS)”.
¡  RFC 5054: “Using the Secure Remote Password (SRP) Protocol for TLS Authentication”. Defines the TLS-SRP ciphersuites.
¡  RFC 5081: “Using OpenPGP Keys for Transport Layer Security (TLS) Authentication”, obsoleted by RFC 6091.
Extensions to TLS 1.2 include:
¡  RFC 5746: “Transport Layer Security (TLS) Renegotiation Indication Extension”.
¡  RFC 5878: “Transport Layer Security (TLS) Authorization Extensions”.
¡  RFC 6091: “Using OpenPGP Keys for Transport Layer Security (TLS) Authentication“.
¡  RFC 6176: “Prohibiting Secure Sockets Layer (SSL) Version 2.0”.
¡  RFC 6209: “Addition of the ARIA Cipher Suites to Transport Layer Security (TLS)”.

http://en.wikipedia.org/wiki/
Transport_Layer_Security

WHAT IS
TLS?

Crypto
primitives

• RSA, DSA,
ECDSA

• Diffie–Hellman,
ECDH

• HMAC
• MD5, SHA1,

SHA-2
• DES, 3DES, RC4,

AES

Ciphersuite
details

• Data structures
• Key derivation
• Encryption

modes, IVs
• Padding
• Compresssion

Protocol
“framework”

• Alerts & errors
• Certification /

revocation
• Negotiation
• Renegotiation
• Session

resumption

Libraries

• OpenSSL
• GnuTLS
• SChannel
• Java JSSE

Applications

• Web browsers:
Chrome, Firefox,
IE, Safari

• Web servers:
Apache, IIS, …

• Application
SDKs

FROM THEORY TO PRACTICE

STRUCTURE OF TLS

Negotiation of cryptographic parameters

Authentication (one-way or mutual) using public key certificates

Establishment of a master secret key

Derivation of encryption and authentication keys

Key confirmation

Bi-direction authenticated encryption
Optional compression

H
AN

D
SH

AK
E

PR
O

TO
CO

L
R

EC
O

R
D

LA

YE
R

ALERT
PROTOCOL

STRUCTURE OF TLS

ClientHello -------->
 ServerHello
 Certificate*
 ServerKeyExchange*
 CertificateRequest*
 <-------- ServerHelloDone
Certificate*
ClientKeyExchange
CertificateVerify*
[ChangeCipherSpec]
Finished -------->
 [ChangeCipherSpec]
 <-------- Finished

Bi-direction authenticated encryption
Optional compression

H
AN

D
SH

AK
E

PR
O

TO
CO

L
R

EC
O

R
D

LA

YE
R

TLS version
random nonce

session identifier
preferred ciphersuites

preferred compression method
extensions

RSA, DSA, or ECDSA
RSA key transport

static Diffie–Hellman

ephemeral Diffie–Hellman

static / ephemeral ECDH

SRP

HMAC with
MD5

SHA-1
SHA-256
SHA-384
SHA-512

DES/3DES CBC
AES CBC/GCM/CCM

others

Session key derivation: HMAC with
(MD-5‖SHA-1) or SHA-256

IS TLS SECURE?

CORE CRYPTOGRAPHIC
COMPONENTS

¡ Handshake protocol
§ secure authenticated key

exchange protocol?

¡ Record layer
§ secure authenticated

encryption channel?

ADDITIONAL PROTOCOL
FUNCTIONALITY

¡ Alerts & errors?
¡ Certification?
¡ Renegotiation?
¡ Session resumption?

IS TLS SECURE?

¡  Two parties aim to establish a shared secret in the presence
of an active attacker who controls all communication and can
potentially compromise certain secret values.

¡  Adversary’s goal:
§ Given either the secret key of an uncompromised session or a

random bitstring of the same length, decide which is the case.

¡  Various security models allow different secret values to be
compromised:
§  Bellare–Rogaway 1993; Blake-Wilson–Johnson–Menezes 1995
§  Canetti–Krawczyk 2001
§  eCK 2007

AUTHENTICATED KEY EXCHANGE
PROTOCOLS

¡  Does this mean that the TLS Handshake Protocol using signed
DH is a secure AKE protocol?

PROVABLE SECURIT Y OF
TLS HANDSHAKE PROTOCOL

ClientHello -------->
 ServerHello
 Certificate*
 ServerKeyExchange*
 CertificateRequest*
 <-------- ServerHelloDone
Certificate*
ClientKeyExchange
CertificateVerify*
[ChangeCipherSpec]
Finished -------->
 [ChangeCipherSpec]
 <-------- Finished H

AN
D

SH
AK

E
LA

YE
R

¡  Classical result:
§  Signed Diffie–Hellman is a secure authenticated key exchange

protocol.

¡  Classical result:
§  Signed Diffie–Hellman is a secure authenticated key exchange

protocol.

¡  Does this mean that the TLS Handshake Protocol using signed
DH is a secure AKE protocol?

¡  No L
¡  The Finished message — which has a recognizable format — is

sent on the encrypted channel.
§  If the attacker is asked to decide between a real key and a random

key, she can decrypt using the given key to see whether the plaintext
looks like a valid Finished message or not.

¡  Truncated modified TLS with signed DHE is a secure AKE
§ Morissey, Smart, Warinschi; ASIACRYPT 2008
§  Gajek, Manulis, Pereira, Sadeghi, Schwenk; ProvSec 2008

PROVABLE SECURIT Y OF
TLS HANDSHAKE PROTOCOL

¡  Security goal:
§  Authenticated encryption: integrity and confidentiality of ciphertexts

¡ Main technique:
§ MAC-then-encode-then-encrypt

¡  Security arguments:
§  Krawczyk; CRYPTO 2001:

TLS with CBC encryption or stream ciphers is secure (IND-CPA, INT-
CTXT), assuming random IVs and no padding
§  But IVs are not random! And there’s padding (for CBC)!

§  Paterson, Ristenpart, Shrimpton; ASIACRYPT 2011:
TLS with CBC encryption long MAC tags is secure length-hiding
authenticated encryption (LHAE)

PROVABLE SECURIT Y OF
TLS RECORD LAYER PROTOCOL

¡  New security notion:
§ Authenticated and confidential channel establishment (ACCE)

¡  Jager, Kohlar, Schäge, Schwenk; CRYPTO 2012:
§  TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA is a secure ACCE protocol

assuming
§  TLS PRF is secure
§  DSA is existentially unforgeable under chosen message attack
§  variant of oracle Diffie–Hellman assumption
§  record layer encryption is secure stateful length-hiding authenticated

encryption (sLHAE)

PROVABLE SECURIT Y OF
TLS

¡  SSL 2.0: flawed in many ways
§  weak MAC
§  downgrade attacks

¡  SSL 3.0: alert message timing
helps break RSA PKCSv1
(Bleichenbacher 1998)

¡  Implementation flaws
§  Weak Netscape PRNG (Goldberg &

Wagner, 1995)
§  Debian OpenSSL entropy bug

(2008)
¡  CBC encryption modes in

record layer vulnerable
§  Bard 2004; Bard 2006
§  Rizzo & Duong “BEAST” attack

2011
§  mashups where attacker can inject

data in same requests as sensitive
user data; can be used to capture
cookies

¡  Renegotiation in many
applications vulnerable to
plaintext injection (Ray &
Dispensa 2009)

¡  Compression in record layer
leaks side-channel information
§  Rizzo & Duong “CRIME” attack

2012
¡  More record layer

vulnerabilit ies…?
¡  Non-browser TLS-reliant

applications have poor
certificate validation (CCS
2012)

ATTACKS!

Crypto
primitives

• RSA, DSA,
ECDSA

• Diffie–Hellman,
ECDH

• HMAC
• MD5, SHA1,

SHA-2
• DES, 3DES, RC4,

AES

Ciphersuite
details

• Data structures
• Key derivation
• Encryption

modes, IVs
• Padding
• Compresssion

Protocol
“framework”

• Alerts & errors
• Certification /

revocation
• Negotiation
• Renegotiation
• Session

resumption

Libraries

• OpenSSL
• GnuTLS
• SChannel
• Java JSSE

Applications

• Web browsers:
Chrome, Firefox,
IE, Safari

• Web servers:
Apache, IIS, …

• Application
SDKs

THE GAP BETWEEN THEORY & PRACTICE

THE GAP BETWEEN THEORY & PRACTICE

Crypto
primitives

• RSA, DSA,
ECDSA

• Diffie–Hellman,
ECDH

• HMAC
• MD5, SHA1,

SHA-2
• DES, 3DES, RC4,

AES

Ciphersuite
details

• Data structures
• Key derivation
• Encryption

modes, IVs
• Padding
• Compresssion

Protocol
“framework”

• Alerts & errors
• Certification /

revocation
• Negotiation
• Renegotiation
• Session

resumption

Libraries

• OpenSSL
• GnuTLS
• SChannel
• Java JSSE

Applications

• Web browsers:
Chrome, Firefox,
IE, Safari

• Web servers:
Apache, IIS, …

• Application
SDKs

Bleichenbacher
RSA PKCSv1

Ray & Dispensa
renegotiation

attack Rizzo & Duong
“CRIME” attack

Rizzo & Duong
“BEAST” attack

Poor certificate
validation

Debian
OpenSSL

entropy bug

THE GAP BETWEEN THEORY & PRACTICE

Crypto
primitives

• RSA, DSA,
ECDSA

• Diffie–Hellman,
ECDH

• HMAC
• MD5, SHA1,

SHA-2
• DES, 3DES, RC4,

AES

Ciphersuite
details

• Data structures
• Key derivation
• Encryption

modes, IVs
• Padding
• Compresssion

Protocol
“framework”

• Alerts & errors
• Certification /

revocation
• Negotiation
• Renegotiation
• Session

resumption

Libraries

• OpenSSL
• GnuTLS
• SChannel
• Java JSSE

Applications

• Web browsers:
Chrome, Firefox,
IE, Safari

• Web servers:
Apache, IIS, …

• Application
SDKs

RENEGOTIATION

¡  Renegotiation allows parties in an established TLS channel to
create a new TLS channel that continues from the existing
one.

¡  Once you’ve established a TLS channel, why would you ever
want to renegotiate it?
§  Change cryptographic parameters
§  Refresh encryption keys (“more perfect forward secrecy”)
§  Change authentication credentials
§  Identity hiding for client

1.  Establish a one-way authenticated TLS session
2.  Renegotiate using mutual authentication.

Since handshake messages are sent in the encrypted TLS channel,
client’s identity is kept private.

WHY RENEGOTIATE?

RENEGOTIATION IN TLS
(PRE-NOVEMBER 2009)

Client Server
(TLS) TLS handshake0

TLS recordlayer0

I’d like to
renegotiate

TLS handshake1

m0

TLS recordlayer1

m1

Messages for renegotiated
handshake are like those in

original handshake, just
sent in existing record layer

TLS RENEGOTIATION “ATTACK”
RAY & DISPENSA, NOVEMBER 2009

Client Server
(TLS)

TLS handshakeEB

TLS recordlayerEB

mE

TLS recordlayerAB

mA

Eve
TLS handshakeAB

mE‖mA

Application
receives

concatenation
of record layers

Server
(application)

mE

mA

Not an attack on
TLS, but on how

applications
misuse TLS

¡  Attacker sends
§ mE = “GET /orderPizza?deliverTo=123-Fake-St↩X-Ignore-This: ”

¡  Client sends
§ mA = “GET /orderPizza?deliverTo=456-Real-St↩Cookie: Account=1A2B”

¡  Server’s web server receives
§ mE‖mA = “GET /orderPizza?deliverTo=123-Fake-St↩

 X-Ignore-This: GET /orderPizza?deliverTo=456-Real-St↩
 Cookie: Account=1A2B”

§  X-Ignore-This: is an invalid header, so the rest of that line gets ignored.
§  The server’s GET request is processed with the cookie supplied by the

client.

EXAMPLE: HTTP INJECTION

¡  The attack is not an attack on TLS security, but on how
applications use TLS.

¡  Applications often see a TLS connection as a single socket
and don’t receive/process the data from the socket until it’s
all arrived.

¡  TLS allows renegotiation to take place at any time, including
in the middle of an “incomplete” transmission.

WHY THE ATTACK WORKS

¡  HTTPS without client certificates
¡  HTTPS with client certificates

§  TLS implementations don’t by default check whether there is any
connection between the client certificate in handshakeEB and
handshakeAB

§  Applications only get the credentials from TLS socket when they
query

¡  SMTPS with client certificates
¡  FTPS without client certificates
¡ more…

VULNERABLE APPLICATION PROTOCOLS

http://www.g-sec.lu/practicaltls.pdf

¡  Immediate workarounds:
§  Servers: disable renegotiation
§  Clients: … nothing

¡  RFC 5746: TLS Renegotiation Indication Extension
§  Client always includes in ClientHello message a

renegotiation indication extension (RIE):
§  if not renegotiating: fixed “empty” string
§  if renegotiating: client_verify_data value from previous handshake’s

Finished message

§  Server always includes in ServerHello message a similar RIE
§  if not renegotiating: fixed “empty” string
§  if renegotiating: server_verify_data value from previous handshake’s

Finished message

§  Alternative “Signalling Ciphersuite Value” (SCSV) for clients worried
about servers that may not understand extensions

AFTERMATH

Includes hash of
all messages from

previous
handshake

Does this fix the
problem?

SECURITY OF
TLS RENEGOTIATION

Recall: renegotiation “attack” is not an attack on TLS but on
how applications misuse TLS

1.  No need to fix TLS.
Applications should just use TLS properly.

2.  Fix TLS so that it’s hard to misuse.

SECURITY OF TLS RENEGOTIATION

¡  Q: What property should a secure renegotiable protocol have?

¡  A: Whenever two parties successfully renegotiate, they are
assured they have the exact same view of everything that
happened previously.

RENEGOTIATION SECURITY

1.  Extend authenticated and confidential channel establishment
(ACCE) security model to include renegotiable, multi-phase
protocols.

2.  Define security notion for renegotiable protocols.
§  secure multi-phase ACCE
§  weakly secure renegotiable ACCE
§  secure renegotiable ACCE

3.  Show that TLS without fixes does not satisfy security definition.

4.  Show that TLS_DHE with fixes does satisfy security definition.
§  TLS_DHE is a weakly secure multi-phase ACCE
§  Every secure multi-phase ACCE combined with TLS fixes is a weakly

secure renegotiable ACCE

5.  Propose stronger fix.

TECHNICAL APPROACH

¡  Extension of Bellare–Rogaway 1993 model for AKE
¡  Adversary controls all communications
¡  Parties have multiple sessions

§ with a “pre-accept stage” and a “post-accept stage” for each session
§  challenge bit bi,s for each session

¡  Queries
§  SendPre(π i ,s, m): deliver message m to party i session s
§  Reveal(π i ,s): reveal session key if pre-accept stage completed
§  Corrupt(i): reveal party i’s long-term secret key
§  Encrypt(π i ,s, m0, m1, len, head): encrypt either message m0 or m1

(based on bit bi,s) using stateful length-hiding authenticated
encryption

§  Decrypt(π i ,s, c, head): if bi,s = 0, return ⊥; if bi,s = 1 and c not a
ciphertext output by Encrypt for the current state, output Dec(c)

ACCE SECURITY
AUTHENTICATED AND CONFIDENTIAL CHANNEL ESTABLISHMENT

¡  Adversary’s goals:

1.  Violate authentication:
§  make some party i accept where its intended partner j is uncorrupted but

has no matching session
2.  Violate ciphertext integrity or confidentiality:

§  guess bit bi,s in any session where intended partner j was uncorrupted and
no Reveal query was issued for session or matching session

¡  Jager, Kohlar, Schäge, Schwenk; CRYPTO 2012:
§  TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA is a secure ACCE protocol

assuming
§  TLS PRF secure
§  DSA existentially unforgeable under chosen message attack
§  variant of oracle Diffie–Hellman assumption
§  record layer is stateful length-hiding authenticated encryption

ACCE SECURITY
AUTHENTICATED AND CONFIDENTIAL CHANNEL ESTABLISHMENT

DEFINITION

¡  A session consists of an
arbitrary number of phases.
§  Each phase has a pre-accept

stage and a post-accept stage.
¡  Adjust model:

§  Reveal query
§  matching conversations

¡  Secure multi-phase ACCE:
§  Authentication: when a party

successfully renegotiates a new
phase, its partner has a phase
with a matching handshake
transcript.

§  Ciphertext integrity and
confidentiality as before.

THEOREMS

¡  TLS_DHE_DSS_WITH_3DES_
EDE_CBC_SHA is a secure
multi-phase ACCE.
§  Under same assumptions as

Jager et al.’s proof that it is a
secure ACCE.

§  Same proof technique.

¡  TLS session resumption
yields a secure multi-phase
ACCE, assuming TLS is a
secure ACCE.

MULTI-PHASE ACCE

DEFINITION

¡ Secure renegotiable
ACCE:
§ Authentication:

§ when a party successfully
renegotiate a new phase,
its partner has a phase
with a matching handshake
and record layer transcript

¡ TLS with or without
RFC 5746 fixes is not a
secure renegotiable
ACCE.

SECURE RENEGOTIABLE ACCE

TLS

DEFINITION

¡ Weakly secure
renegotiable ACCE:
§ Authentication:

§ when a party successfully
renegotiate a new phase,
its partner has a phase
with a matching handshake
and record layer transcript,
provided no previous
phase’s session key was
revealed

¡ TLS without fixes is not
a weakly secure
renegotiable ACCE.

¡ TLS with RFC 5746 fixes
is a weakly secure
renegotiable ACCE.

WEAKLY SECURE RENEGOTIABLE ACCE

TLS

TLS WITHOUT FIXES

¡ TLS without fixes is not
a weakly secure
renegotiable ACCE.

¡ Ray & Dispensa’s
attack means that
client and server
renegotiate with
different views of
previous handshakes

TLS WITH RFC 5746 FIXES

Theorem. If TLS with
renegotiation indication
extension (RIE) is a secure
multi-phase ACCE, then it is
also a weakly secure
renegotiable ACCE.

Theorem. TLS_DHE with RIE is
a secure multi-phase ACCE.

Corollary. TLS_DHE with RIE is
a weakly secure renegotiable
ACCE.

WEAKLY SECURE RENEGOTIABLE ACCE

RENEGOTIATION ATTACK ON FIXED TLS?
RFC 5746 RENEGOTIATION INFORMATION EXTENSION

Client Server
(TLS)

TLS handshakeEB

TLS recordlayerEB

mE

TLS recordlayerAB

mA

Eve
TLS handshakeAB

mE ‖ mA

Server
(application)

mE

mA

[RIE = empty]
[RIE = empty]

[RIE = handshakeEB]

RIE mismatch so handshakeAB fails

TLS WITH RFC 5746 FIXES

¡ TLS with RIE is not a
secure renegotiable
ACCE.

¡ Adversary can reveal
session key of current
phase, change a
message on the record
layer, and parties will
still renegotiate.

¡ This doesn’t necessarily
translate into an
obvious attack.

HOW TO MAKE TLS A SECURE
RENEGOTIABLE ACCE

¡ Augment RIE with:
§ hash of all messages

sent & received on the
record layer in previous
phase

SECURE RENEGOTIABLE ACCE

CONCLUSIONS

1.  TLS is more than just its core cryptographic protocol.

2.  Many applications using TLS vulnerable to renegotiation
attack.

3.  Including hashes of previous phases’ handshake protocol
transcripts provably detects renegotiation attacks
(+ record layer transcripts for even stronger security).

SUMMARY & CONCLUSIONS

ATTACK VULNERABILITY
SSL PULSE, AUGUST 10, 2012

https://www.trustworthyinternet.org/ssl-pulse/

¡  Show that other TLS ciphersuites are secure LHAE/ACCE
protocols.
§  e.g. RSA key transport with RC4 and SHA1 is the most widely used

ciphersuite
¡  Relate CRIME attack to LHAE/ACCE security model.
¡  Extend ACCE model to cover one-way authenticated protocols.

§  Vast majority of TLS sessions are one-way, not mutually
authenticated.

¡ Model additional TLS functionality:
§  certification
§  ciphersuite negotiation
§ modular framework for additional functionalities?

¡  Datagram TLS
¡  Consider other real-world protocols

§  SSH, Kerberos, …

OPEN QUESTIONS

1.  TLS is more than just its core cryptographic protocol.

2.  Many applications using TLS vulnerable to renegotiation
attack.

3.  Including hashes of previous phases’ handshake protocol
transcripts provably detects renegotiation attacks
(+ record layer transcripts for even stronger security).

ON THE SECURITY OF TLS RENEGOTIATION
D O U G L A S S T E B I L A , Q U E E N S L A N D U N I V E R S I T Y O F T E C H N O LO GY

JOINT WORK WITH FLORIAN GIESEN AND FLORIAN KOHLAR, RUHR-UNIVERSITÄT BOCHUM

