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Abstract—Content delivery networks (CDNs) are an essential
component of modern website infrastructures: edge servers lo-
cated closer to users cache content, increasing robustness and
capacity while decreasing latency. However, this situation becomes
complicated for HTTPS content that is to be delivered using the
Transport Layer Security (TLS) protocol: the edge server must
be able to carry out TLS handshakes for the cached domain.
Most commercial CDNs require that the domain owner give their
certificate’s private key to the CDN’s edge server or abandon
caching of HTTPS content entirely. We examine the security and
performance of a recently commercialized delegation technique
in which the domain owner retains possession of their private
key and splits the TLS state machine geographically with the
edge server using a private key proxy service. This allows the
domain owner to limit the amount of trust given to the edge
server while maintaining the benefits of CDN caching. On the
performance front, we find that latency is slightly worse compared
to the insecure approach, but still significantly better than the
domain owner serving the content directly. On the security front,
we enumerate the security goals for TLS handshake proxying
and identify a subtle difference between the security of RSA key
transport and signed-Diffie–Hellman in TLS handshake proxying;
we also discuss timing side channel resistance of the key server
and the effect of TLS session resumption.
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I. INTRODUCTION

Large-scale websites demand significant infrastructure and
services: they need to be able to handle a large volume of
requests and they need to be secure. To handle large volumes,
websites often distribute requests across many servers. To
provide security, a key ingredient is the transmission of data
using the Transport Layer Security (TLS) protocol [1], using an
authenticated encryption tunnel between a server and a client.

With the high interactivity involved in Web 2.0 services,
web sites also need to be fast and responsive. One of the
major barriers to improving latency is physics itself. A bit of
data cannot reach its destination faster than the speed of light,
and the circumference of the globe means that the minimum
time required to send information around the world is 80ms, a
nontrivial amount of time in both computer terms and human
terms, as human beings only perceive events that take less
than 100ms as instantaneous [2]. To reduce latency, servers can
be geographically distributed so that there is a server located
physically close to the user.

A. Content delivery networks (CDNs)

A common approach to simultaneously handling a large
volume of requests and reducing latency is the use of a content
delivery network (CDN). A CDN service typically runs a
network of machines that are widely distributed geographically.
These servers are often called edge servers since they are
placed near the “edge” of the Internet, namely close (in terms
of network topology) to retail commercial Internet users.

Website functionality is typically shared between the CDN
edge server and the origin web server(s): CDNs are used to
speed up delivery of static assets such as images and videos,
while dynamic pages (login, account pages, etc.) are served
from the origin server. The dynamic content may be served
directly from the origin web server, or may be routed through
a reverse proxy server run by the CDN. Either way, on average
a request will travel a shorter distance through fewer networks,
reducing the minimum transport latency needed.

Many modern CDNs use this idea of a reverse proxy to
provide a more comprehensive service for websites. By using
a third party reverse proxy service, a website can be run from
a single location but gain all the advantages of a global reverse
proxy with very little configuration. It can be enabled simply
by setting the DNS records of the site to point to one of the
reverse proxy service’s IPs. The reverse proxy service can then
use IP anycast routing [3] to allow each of the geographically
dispersed edge servers to use the same IP address, providing
global load balancing. Visitors to the site will be served data
from the edge server obtained from the upstream origin site
or a local cache. This architecture is flexible and provides
additional benefits above and beyond caching such as DDoS
protection and web application firewall services.

While the use of CDNs allows for handle a large volume
of request and reducing latency, it has an impact security.
Encryption on the web is typically achieved using a server-
authenticated TLS channel between the web browser and web
server. Server authentication is provided using a public key
infrastructure (PKI): the server obtains a certificate linking
its public key to its domain name. When the TLS channel
is established, the client verifies that the server’s certificate
matches the domain name of the website.

Having a reverse proxy in the middle of this transaction
requires rethinking the end-to-end TLS model. TLS requires
that server which the serves content to the browser—in the
case of a CDN, this means the edge server—must be able
to complete TLS handshakes, which requires the private key
from the certificate for this domain name. Previous generation



CDNs got around this by hosting static assets on a different
domain served over unencrypted HTTP. However, modern
browsers restrict display of unencrypted content on pages served
over a secure channel: thus, if an HTML page is served over
HTTPS, then all of its sub-resources—images, JavaScript, and
stylesheets—must also be served over HTTPS.

An alternative approach employed by most reverse proxy
CDNs is to have the private key for every cached domain present
at the edge server. This allows the edge server to complete
TLS handshakes on behalf of the domains it is caching, so it
can serve all required content over HTTPS. Understandably,
many website operators are reluctant to share their private
key with a third party or store private keys in less secure
edge locations, as this significantly increases the risk of key
compromise. To ensure low latency to the maximum number
of users, edge servers will often be physically located in a
variety of different countries and political jurisdictions, which
may be subject to distinct regulatory regimes, governmental
controls, and levels of physical security. Protecting private
keys on machines where the attacker has physical access has
proven to be a near impossible task, even using dedicated
hardware [4]; the lack of control of data on computers at some
edge locations means that the confidentiality of these keys
is at risk. Renewing TLS certificates can be expensive, and
revocation of compromised certificates is not a solved problem.
Consequently, placing private keys at risk in all locations of
a CDN is inadvisable. Issuing edge servers with short-lived
certificates for each hosted domain is also undesirable in the
current web public key infrastructure due to the need for the
domain owner to frequently obtain and deploy new certificates.

B. TLS handshake proxying

Very recently, commercial CDNs have explored various
architectures for TLS proxying. Akamai filed a patent appli-
cation in 2013 [5] for proxying TLS handshakes involving
RSA key transport. In 2014, CloudFlare announced a product
called Keyless SSL [6], [7] which provides proxying of TLS
handshakes for both RSA key transport and signed-Diffie–
Hellman ciphersuites.

The main idea of both of these approach is to split the TLS
handshake so that the edge server does not have to store the
keys at all. Part of the TLS handshake between the client and
the edge server is proxied over a secure link to a third server,
a key server, which maintains possession of the origin server’s
private key. For compatibility with clients, this split does not
require any changes to the TLS protocol.

More specifically, in the TLS handshake there is a single
operation which must be performed using the private key
corresponding to the origin server’s public key certificate.
For TLS ciphersuites that use RSA encryption, the RSA
private key must be used to decrypt the pre-master secret
in the ClientKeyExchange message. For TLS ciphersuites
that use digital signatures, the private key must be used to
sign the server’s ephemeral Diffie–Hellman public key in the
ServerKeyExchange message. In this construction, the edge
server relays these operations over a dedicated TLS channel
to an off-site key server which performs the operations and
returns the result, allowing the edge server to complete the
TLS handshake for the origin server’s domain name. The origin

server’s private key never leaves the key server. In practice, the
key server could be embodied in several ways: (i) the key owner
(the party behind the origin web site) could run its own key
server, maintaining possession of the private key and ensuring it
only uses the key on requests that come authenticated by edge
servers in the CDN; (ii) the key owner could give the private
key to the CDN, who runs a key server in a more controlled
high-security environment; or (iii) a third party could run the
key server, for example for compliance or liability reasons. In
any of these cases, the private key could be kept in a hardware
security module (HSM) if desired.

Figure 1 compares the round trips required without and
with a proxy. Requesting a resource over HTTPS requires four
round trips: one to establish the TCP socket, two for the TLS
handshake, and one to request and receive the HTTPS resource.
Without proxying (Fig. 1a), all four flows must take place
between the client and original web server. With proxying
(Fig. 1c), if the edge server has cached the content, the client
communicates only with a nearby edge server, which then
proxies just one TLS handshake message to the key server.

C. Contributions

This paper studies the performance and security aspects
of TLS handshake proxying. Since these systems are already
being used by a commercial CDN, it is essential to understand
how the security goals change in the context of TLS handshake
proxying, and assess whether the designs meet the security goals.
It is also important to check that the latency improvements of
TLS handshake proxying are indeed realized.

Our work focuses specifically on the TLS handshake
proxying system implemented by CloudFlare in their Keyless
SSL product [6], [7]; while Akamai has a patent application
in this area, they have no deployed system as of the time of
this writing.

Performance. Our experiments show that actual latency
matches expected behaviour. For a client in Dublin and origin
web server in San Francisco (Fig. 1a), the time for a direct
handshake was 497ms. With the private key at an edge server
in London (Fig. 1b), the handshake time is just 64ms. Using
TLS proxying, where the key is kept safe in the key server
in San Francisco but the rest of the handshake is handled by
the edge server (Fig. 1c), the total handshake time is 395ms, a
substantial reduction compared to a direct handshake.

Security. We enumerate the security goals of TLS handshake
proxying: key-server-to-client authentication, edge-server-to-
client authentication, and channel security. Signed-Diffie–
Hellman meets all of these, but RSA key transport does not meet
uniqueness of sessions in key-server-to-client authentication.
We discuss security concerns for the key server (including the
importance of resistance to timing side channel attacks in RSA
key transport), and the effect of TLS session resumption using
both session IDs and session tickets.

D. Related work

Cryptographic verification of delegated data. Lesniewski-
Laas and Kaashoek [8] initiated a line of work aiming to provide
authenticity of data delivered by CDNs and other proxies.
In their SSL splitting technique, the proxy relays the entire
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Fig. 1: Comparison of flows to establish a TLS channel and receive an HTTPS resource between a client in Dublin and a web
server in San Francisco. (Sub-figures (b) and (c) show the client separated a bit to make the flows visible in the diagram.)

TLS handshake to the origin server, who completes the TLS
handshake, then provides the proxy with the encryption session
keys and with authentication tags for the requested resources;
this allows the proxy to deliver the requested resources over an
encrypted channel while authenticity of those resources still is
shown demonstrable only by the origin server. This technique
only works with MAC-then-encode-then-encrypt ciphersuites in
TLS, not modern authenticated-encryption-with-associated-data
(AEAD) in TLS 1.2. Several subsequent works, such as [9],
[10], [11], describe alternatives to HTTPS/TLS that provide
authenticity of cached resources. These are distinguished from
proxied TLS handshakes, which does not aim to provide
integrity or authenticity assurances of the content itself, only
of the authority to deliver content on behalf of the original
party. While this is admittedly a weaker assurance to the
client, it is something that can be implemented on the web
today with no client-side changes: cryptographic verification of
delegated data would require changes in the TLS protocol and
browser implementations. Other work does address verifying
the delegation of TLS handshakes [12], this again requires
protocol changes, and only works on TLS ciphersuites involving
signatures.

Security of CDNs. Liang et al. [13] survey the practices
of 20 major CDNs with respect to HTTPS certificates. The
consider two scenarios for CDNs hosting HTTPS content:
shared certificates, where the CDN obtains a certificate of
its own for domains delegated to it by its clients, and custom
certificates, which “requires web site owners to upload their
certificates and private keys to CDN providers”. This marks a
major distinction with proxied TLS handshakes, where web site
owners can retain their private keys at a key server. Liang et al.
also discuss techniques for indicating SSL delegation from the
web site owner to the CDN using certificate name constraints
and DNS-based solutions. Delignat-Lavaud and Bhargavan [14]
examine a variety of security issues in HTTPS proxying for
commercial CDNs.

II. TLS AND HANDSHAKE PROXYING

The Transport Layer Security (TLS) protocol [1] is the
successor of the Secure Sockets Layer (SSL) protocol, and is
used to provide confidentiality, integrity, and authentication for
a variety of Internet protocols, most prominently the Hypertext
Transport Protocol (HTTP) [15] in the form of HTTPS (HTTP

over SSL) [16]. As most widely used on the web, HTTPS
provides server-to-client authentication using X.509 certificates
issued by a commercial certificate authority binding a particular
RSA public key to a particular domain name.

The TLS protocol consists primarily of two sub-protocols:
the handshake protocol and the record layer. In the handshake
protocol, the client and server negotiate which combination of
cryptographic algorithms to use (called a ciphersuite), as well
as other parameters, then perform server-to-client authentication
and establish a shared secret session key. The two most common
authentication and key establishment mechanisms are RSA key
transport, where the client picks a random session key and
encrypts it under the server’s RSA public key, and signed Diffie–
Hellman, where the client and server perform an ephemeral
Diffie–Hellman (DH) key exchange and the server signs its
ephemeral DH public key to demonstrate authenticity; these
two methods are described in more detail in Section II-A. The
session key established by the handshake protocol is then used
in the record layer to encrypt and authenticate application data
using the cipher negotiated during the handshake protocol.

A. Traditional TLS handshake

In TLS handshakes involving RSA key transport, as shown
in Fig. 2a, the server sends its RSA public key to the client in the
Certificate message. The client generates a premaster secret
(a uniformly random string of fixed length), then encrypts the
premaster secret under the server’s RSA public key and sends it
to the server in the ClientKeyExchange message. The server
decrypts using its private key and the decrypted premaster secret
is used to establish the master secret and session key. Only the
true server holding the private key can decrypt the message
successfully, so the client obtains an assurance of server-to-
client authentication if the server demonstrates it knows the
session key in the Finished message.

In TLS handshakes involving signed-Diffie–Hellman key
establishment, as shown in Fig. 2b, the server sends its public
key to the client again in a Certificate message; notably this
can be any type of public key, including RSA, DSA, or elliptic
curve DSA (ECDSA). The server picks a random DH key, and
sends the DH public key and parameters, along with a signature
of those values, to the client in the ServerKeyExchange
message. The client verifies the signature, then sends its own
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Fig. 2: Traditional TLS handshake (without proxying)
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Fig. 3: TLS handshake with proxying

DH public key in the ClientKeyExchange message; both
parties can compute the DH shared secret.

Notably, in both RSA and signed-DH ciphersuites, there
is only one step in the handshake that requires the server’s
long-term private key. For RSA key transport, this is step
3b in Fig. 2a, the decryption of the premaster secret in the
ClientKeyExchange. For signed-DH, this is step 2e in Fig. 2b,
the signing of the server’s ephemeral DH public key and
parameters for the ServerKeyExchange message.

Additionally, there is an abbreviated form of the TLS
handshake which allows the client and server to resume a
previously established session using fewer roundtrips. There
are two forms for session resumption: either the server stores
state and the client sends a session ID [1, §7, F.1.4], or the
server encrypts the state under a master secret key and offloads
that state to the client in the form of a session ticket [17].

B. TLS handshake proxying

The server’s long-term private key is a valuable resource
that it wishes to protect. In TLS handshake proxying, the
private key operation is performed remotely for both RSA key

transport and signed-Diffie–Hellman ciphersuites. During the
TLS handshake between the client and the edge server of a
CDN, the single operation involving private key is proxied to a
separate key server, which may for example be a separate server
in a high-security area of the CDN’s network, or may be hosted
by the original domain owner. The connection between the edge
server and the key server is a pre-established secure connection
using TLS with mutual authentication between the edge server
and the key server (using credentials from a separate PKI).

For RSA key transport, as shown in Fig. 3a, the
edge server relays the encrypted premaster secret from the
ClientKeyExchange message, as well as an identifier of the
certificate used in the connection (in case there is more than
one) to the key server, who responds over the pre-established
secure connection with the decrypted premaster secret. The
edge server then computes the master secret key and continues
processing the TLS handshake.

For signed-Diffie–Hellman, as shown in Fig. 3b, the edge
server generates an ephemeral DH public key and relays that,
along with the DH parameters, a certificate identifier and the
client and edge server random nonces, to the key server, who
responds over the pre-established secure connection with the
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signature. The edge server assembles the ServerKeyExchange
message and continues processing the TLS handshake.

This architecture ensures that the private key does not need
to be present on the edge server. It does not remove the edge
server entirely from the security equation. If an ephemeral key
is compromised, an attacker could decrypt the entire transaction,
but not any subsequent or previous transactions. If the edge
server’s credentials for authenticating itself to the key server
are compromised, an attacker could get the key server to help
it carry out handshakes. If the edge server is itself malicious,
it could deliver content other than that intended by the origin
server. We discuss these and other security issues in Section IV.

TLS handshake proxying can work with all ciphersuites that
use RSA key transport or signed-DH, regardless of the bulk
cipher: older ciphers such as RC4 and block ciphers in MAC-
then-encode-then-encrypt mode, as well as modern designs
such as authenticated encryption with auxiliary data schemes.

C. Implementation consideration: Mapping requests to keys

Logically, the content delivery network is a collection
of HTTPS multiplexers as defined by Delignat-Lavaud and
Bhargavan [14]. In particular, an HTTPS multiplexer receives
TCP connections identified by an IP address and a port number.
It has a collection of TLS certificates, and a TLS session cache.
It picks a certificate based on the IP address, port number,
and optionally the server name indicator (SNI) TLS extension,
and attempts to complete the TLS handshake. If successful, it
passes the HTTP request off to a virtual host for the request,
based either on the IP address and port combination, or based
on the Host HTTP header. The system works as follows:

• The content delivery network maintains a table of
triples consisting of:

1) one or more IP address and port combinations;
2) a certificate valid for one or more domains;
3) one or more virtual hosts.

No IP address and port combination will appear in
more than one triple.

• Client: To access a web resource on
https://example.com:443/path, the client
sends a DNS request for example.com, which
resolves to the IP address 1.2.3.4 of the edge server
to be used; the DNS resolution may be geographically
specific. The client then initiates a TLS handshake
with that IP address and port.

• Edge server on 1.2.3.4:443: Upon receiving a TLS
handshake request on a given IP address and port, the
edge server looks up the cerificate and virtual hosts
associated with the IP address and port. The edge
server executes the TLS handshake with the client.
When the edge server requires private key operations
to be performed for the certificate in question, the edge
server transmits to the key server as in Section II-B.

• Key server: The key server verifies that the connection
with the edge server is secure (with the edge server
authenticating using a client certificate). The key server
verifies that the edge server is allowed to request private
key operations for the requested host, and, if so, does
the operation and returns the result.

• Edge server on 1.2.3.4:443: Upon completion of
the TLS handshake, the edge server checks the Host
header of the HTTP request. If the domain name in
the Host header is not part of the triple for this IP
address/port and this certificate, the edge server aborts.

III. PERFORMANCE

In this section, we examine the performance in terms of
latency that can be expected from TLS handshake proxying.
We consider the case of a traditional reverse proxy network
with the key server being located in a more secure location, in
particular under the control of the original domain owner and
located in the same place as the origin server, as in Fig. 1c.

Let A denote the location of the client, B denote the location
of the edge server, and C denote the location of the origin
server. As noted above, we assume the key server is located
in the same place as the origin server, at C. We denote the
roundtrip time between locations A and B as AB, and so on.

First consider the traditional TLS handshakeas shown in
Fig. 2. Including a standard TCP handshake, there will be 6
flows or 3 roundtrips between the client A and the origin C
before application data can be exchanged. (We assume that the
server’s IP address is known so no DNS lookup is needed.)

Now consider the proxied TLS handshake as shown in
Fig. 3. As noted above, we assume the key server is in the
same location as the origin server C. We also assume that
the tunnel from B to C is pre-established, and that the cost of
encryption on this tunnel is negligible (due to modern processors
and technology like Intel’s AES instructions). Including a
standard TCP handshake, there will be 6 flows or 3 roundtrips
between the client A and the edge server B and 2 flows or
1 roundtrip between the edge server B and the key server C
before application data can be exchanged. (If the application
data is cached at the edge server, no additional flows between
locations B and C are required to deliver the content.)

Let HSfull denote the time for the original, unproxied
handshake and HSprox the time for the proxied handshake.
The amount of computation in both is equal so we ignore
that factor; as noted above we assume negligible the cost of
cryptographic computations for the pre-established tunnel. Then

HSfull = 3AC (1)
HSprox = 3AB + 1BC (2)

In practice, edge server locations are chosen to be as close
as possible to visitors in order to reduce latency. If we can
assume that AB is significantly lower than AC, and that AB +
BC is on the same order as AC, then

HSfull = 3AC ≈ 3AB + 3BC
= 3AB + 1BC + 2BC = HSprox + 2BC (3)

With these assumptions, a proxied TLS handshake should
save nearly as much time as two roundtrips between the edge
server and the origin server.
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A. Methodology

We tested TLS key proxying using CloudFlare’s imple-
mentation, which was implemented with the following three
parts:

1) Changes to OpenSSL to allow the TLS state machine
to use a callback to perform the private key operation.

2) Changes to the nginx web server to establish and
maintain connections to the key server and create
callbacks that bundle the private key operation request
and send it to key server.

3) Creation of a simple key server for the private key
operation, implemented in C using OpenSSL.

We then tested the performance of this mechanism. We
positioned a client (A) in Dublin, and an edge server (B) in
London. The origin server and key server (C) were positioned
in San Francisco. We collected the following performance data:

• network roundtrip time between the various locations
(average of 32 iterations using ping -c 32); and

• handshake times (average over 60 seconds of repeated
connections using cfssl scan1) for: (i) a direct
handshake between the client A and the origin server
C; (ii) a handshake where the key is held by the edge
server B; and (iii) a proxied handshake; these three
scenarios correspond to those in Fig. 1.

The different scenarios were set up through CloudFlare’s
control panel. In the direct handshake handshake scenario, the
site is set up with no reverse proxy. In the scenario where the
key is held by the edge server, the same certificate that was
used on the origin is uploaded to CloudFlare and the reverse
proxy is enabled for the site. To test the proxied handshake
scenario, Keyless SSL is enabled in the control panel and the
key server is configured.

Some additional precautionary steps were made to ensure
that the edge server is in the proper state to test the assumptions.
First, we used testing tool that has disabled all forms of session
resumption (both sesion id based, and session ticket based).
Second, performed a test run before the experiment to make
sure that the persistent connection between the edge server
and the key server was fully established. The existence of this
persistent connection was validated on the key server before
proceeding with the experiment.

Note that this experiement was performed on a site with
extremely low traffic and for which the key server was not under
load. For higher traffic sites, the edge server can be configured
to point to multiple key servers, via DNS load balancing or
through a round-robin selection process.

B. Measured Performance

Fig. 4a shows the observed network roundtrip times. Fig. 4b
shows the predicted and actual handshake times for the three
scenarios correspond to those in Fig. 1. The predicted times in
Fig. 4b are based on the network roundtrip times observed in
Fig. 4a and assume zero time for the cryptographic operations,

1https://github.com/cloudflare/cfssl/blob/jacob/scan-pki/scan/tls handshake.
go#L154

Endpoints Roundtrip time

AB: Dublin (client)–London (edge) 11ms
BC: London (edge)–San Francisco 159ms
AC: Dublin (client)–San Francisco 163ms

(a) Observed network roundtrip times

Operation Predicted Actual

(i) Direct handshake (3AC) (Fig. 1a) 489ms 496ms
(ii) Handshake w/key at edge (3AB) (Fig. 1b) 33ms 64ms
(iii) Proxied handshake (3AB + BC) (Fig. 1c) 329ms 395ms

(b) Predicted and observed handshake times; predictions based on
network roundtrip times from Fig. 4a and assume zero time for
cryptographic operations

Fig. 4: Predicted and observed performance of TLS handshakes
without and with proxying

which of course is a simplification, but suffices since the amount
of cryptographic computation in all three cases is similar.

Observe that the predicted performance benefits of a proxied
handshake roughly match the actual results. The handshake
time of a proxied handshake is more than 2 full BC roundtrips
shorter than a direct handshake, as expected from equation (3).

IV. SECURITY

Since the origin server—the owner of the certificate—is
not the direct point of contact for connections from clients,
the security properties expected by the various parties differ
somewhat from the normal TLS setting. The client still wants
to be sure that it is communicating with the correct server,
but now this may be an edge server that has been authorized
to serve data by an origin server. The origin server wants to
ensure that edge servers cannot continue to answer requests
without the origin server’s ongoing authorization.

In this section, we recap the security goals of traditional
client-server TLS connections, then discuss the security goals
for proxied handshakes and provide a justification that the
design meets those goals. Special consideration will be given
to the treatment of side channels and session resumption.

A. Security goals of client-server TLS

The security goals for TLS in a client-server setting are:

• Server-to-client authentication. If a client accepts in a
session—meaning that it completes the handshake and
believes it is securely talking with a peer—and the long-
term private key of the server that the client thinks it
is talking to was not compromised, then the server did
participate in a unique session with the server, and the
transcripts of the client and server match. (Requiring
that the server and client having matching transcripts
captures the notion that the adversary was effectively
passive in this session. Requiring that the corresponding
session be unique captures replay attacks.)

• Channel security. The adversary cannot read, alter, or
insert messages on the authenticated encryption channel
between the client and server, provided that the client
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and server’s session keys were not compromised and
that the server’s long-term key was not compromised.
If the property holds even if server’s long-term key
was compromised after the client accepted, then the
channel is said to have forward secrecy.

Formal security definitions typically go into significant
technical detail on how to identify matching client and server
sessions for the purposes of defining security, but we omit
that detail and focus on high level goals. Several recent works
have shown that TLS 1.2 ciphersuites using RSA key transport
and signed-DH satisfy a reasonable security definition under
the assumption that the cryptographic primitives used in the
ciphersuite are secure, with the analysis shown using either
provable security [18], [19], [20] or a combination of formal
verification and provable security [21].

B. Threat model for TLS handshake proxying

In addition to the standard concerns about a network adver-
sary breaking the confidentiality or integrity of communication,
the primary threat about which we are concerned is that of a
rogue edge server being able to impersonate an origin server
after being “deauthorized” by the key server. In this work we
are not concerned with an edge server who, while still being
trusted by the key server, decides to collect or store user data,
nor who decides to delivery alternative (possibly malicious)
content than the content intended by the origin server: the edge
server may misbehave, but if it is detected misbehaving (for
example through routine monitoring), it can be immediately
cut off and should no longer be able to act on behalf of the
origin server.

C. Security goals of TLS handshake proxying

At a very high level, the security goals of TLS with
handshake proxying are like in the normal client-server setting:
the client wants to be assured that it is talking to the right server,
and that no one can read or manipulate their communications.
There are now four parties involved in the connection: the
client, the edge server, the key server, and the origin server.
The client communicates with the edge server, and the edge
server presents the (cached) content of the origin server to the
client with the assistance of the key server. However, there
is the potential that the edge server may be compromised, so
the origin server wants assurance that the edge server cannot
impersonate it once the key server has stopped helping the
edge server. This leads to three high-level security goals:

• Key-server-to-client authentication. If a client accepts
in a session, and the long-term private key of the origin
server that the client thinks it is talking to was not
compromised, then the key server did participate in a
(unique) session with the values used by the client.

• Edge-server-to-client authentication. If a client accepts
in a session, and the long-term private key of the origin
server that the client thinks it is talking to was not
compromised, and no edge server’s private key was
compromised between the time when the client sent
its first message and received the response, then a
legitimately authorized edge server for that key server
did participate in a (unique) session with the client.

• Channel security. The adversary cannot read or insert
messages on the authenticated encryption channel
between the client and edge server, provided that
the client and edge server’s session keys were not
compromised, and the long-term private key of the
origin server that the client thinks it is talking to was
not compromised, and no edge server’s private key
was compromised between the time when the client
sent its first message and accepts.

This channel security goal can be further strengthened to
have forward secrecy, by requiring that the origin server’s
private key was uncompromised only before the client accepts,
but not necessarily after. We always assume forward secrecy
with respect to the long-term keys that the edge servers and
key servers use to authenticate each other.

Signed-DH meets all of the required security goals for TLS
handshake proxying, under the assumption that the building
blocks are secure. RSA key transport meets all goals except for
uniqueness of the key server session in key-server-to-client
authentication, which is not possible since the key server
only receives the ClientKeyExchange message containing
the encryption of the premaster secret, which an attacker could
replay. However, we will still have uniqueness in edge-server-
to-client authentication, so an attacker cannot replay the actual
content in a session between an edge server and a client. A
more detailed justification is given in Appendices B and C.

D. Security of the key server

Because this new architecture for proxied TLS handshakes
is designed to put the private key operation on its own server
that can be physically separated, we will assume that the key
server itself is physically secure. However, it is still network-
connected and it acts as a private key oracle, so there are
additional threat vectors to consider.

Access to the key server needs to be restricted to trusted
parties only. For the private key operations, access needs
to be restricted to only trusted edge servers. We employ a
dedicated TLS connection between the key server and the
edge server, using a separate authentication infrastructure (e.g.,
dedicated pre-shared keys or certificates from a private PKI).
See Section IV-E for discussion of the security of these keys.

The communication between the edge server and the key
server is over the public Internet, and this communication
is of values that are normally computed internally in a
TLS implementation. As noted above, this communication is
encrypted using a dedicated TLS connection between the edge
server and the key server, but there may still be side channels
associated with this communication. In particular, there are two
types of side channels to consider.

Timing side channels. If the processing time of the operation
performed by the key server is dependent on secret key data, a
timing side channel may exist.

• For RSA key transport, it is essential that the
key server’s implementation of the decryption of
the ClientKeyExchange message containing the en-
crypted premaster secret take into account all nor-
mal timing side channel protections, such as in [1,
§7.4.7.1], to prevent Bleichenbacher’s attack [22]. It
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should be noted that standalone implementations of
RSA PKCS#1v1.5 do not have sufficient side-channel
protection, and that the TLS code must add its own side-
channel protection, for example by always constructing
a random premaster secret first to use in case PKCS#1
padding is incorrect.2

• For signed-Diffie–Hellman, standard timing counter-
measures for the signing operation should suffice.

Length side channels. The length of the ciphertext response
from the key server can be observed by an attacker. If the
key server is designed to return constant-length ciphertexts for
all requests, the length side channel is eliminated. Note that
it is not necessary that ciphertexts for different ciphersuites
(RSA key transport versus signed-Diffie–Hellman) be the same
length, as which ciphersuite is used is public knowledge after
observing ClientHello and ServerHello messages. There
are no additional side channel vectors that are opened up by
having several load-balanced key servers.

E. Security of the edge server

When establishing the tunnel, the key server needs to
validate the identity of the edge server. This can be achieved
with mutually authenticated TLS, but this moves the root of
trust to the credential (such as a client certificate or pre-shared
key) on the edge server that it uses to authenticate to the key
server. The risk to this credential can be limited in a number
of ways: by reducing the validity period of the credential and
rotating quickly; by using trusted computing mechanisms like
remote attestation to ensure that the server is not compromised;
by limiting access to the key server through IP filtering; and by
revoking access from certain machines based on monitoring.

F. Session resumption

Session resumption allows a TLS client and server to resume
a previously established session with an abbreviated handshake,
using the previous master secret key to derive new session keys,
without performing the expensive public key operations and
additional roundtrip required to derive a new premaster secret.
There are two mechanisms for session resumption.

Session IDs. As specified in the main TLS standard [1,
§7, F.1.4], during the initial handshake the server can store
the required state information, then provide the client with a
session ID; upon future handshakes, the client includes the
session ID in its ClientHello message and, if the session ID
is valid (has not expired), the server retrieves the state and both
parties compute new session keys and Finished messages.

• If individual edge servers allow session resumption
using session IDs, and keep local session state (rather
than sharing it with other edge servers), then no
additional security considerations apply compared with
session ID-based resumption in normal SSL.

• We do not consider the case of edge servers sharing
local session state as it generally goes against the goal
of geographic dispersion of edge servers.

2See for example OpenSSL’s ssl3_get_client_key_exchange
method in ssl/s3_srver.c.

Session tickets. TLS session tickets [17] allow a server to
off-load storage of session state to the client by asking the
client store the server’s state, encrypted under a medium-term
session ticket key used by the server. In the initial handshake,
the server provides the encrypted session state to the client in
a NewSessionTicket message before its Finished message.
In the next handshake, the client returns that encrypted session
state in a SessionTicket extension in the ClientHello
message, which the server attempts to decrypt and use.

If individual edge servers use their own local medium-term
session ticket key, then no additional security considerations
apply compared with use of session tickets in normal TLS.

If edge servers for the same origin server share medium-
term session ticket keys, then the client may resume one session
for the same origin server at a different edge server, but only
when that edge server is acting for the same origin server.

Finally, suppose all edge servers—regardless of the origin
server—share medium-term session ticket keys. As in the
previous case, the client may resume one session for an origin
server at a different edge server. However, since session ticket
keys are shared among edge servers regardless of origin server,
it is possible that a session resumption request, redirected to
an edge server for a different origin server than the original
one, would accept. Correct mapping of sessions to hosts now
relies on the edge server respecting the HTTP Host header.

Further discussion on the challenges in handling session
resumption in an HTTPS multiplexing situation is given by
Delignat-Lavaud and Bhargavan [14]. Our recommendation for
session resumption using session tickets is the second option
above, providing a mechanism for load balancing without the
risk of virtual host confusion in the third option.

The use of session resumption with renegotiation should
take into account the impact of the triple handshake attack [23].

V. CONCLUSION

By proxying the private key operations in the TLS hand-
shake to a separate key server, content delivery networks can
continue to serve many clients with low latency via edge servers
while allowing private keys to be maintained in a higher security
key server. This architecture can reduce the risk of website
operators having their private keys stolen from any edge server
in a global network of content delivery servers. Given that
commercial CDNs are deploying infrastructures like this, it is
important to understand their properties.

We observed this improved latency performance in a small
scale proof-of-concept experiment. An interesting line of future
work would be a detailed analysis of latency characteristics for
TLS proxying on a global content delivery network. We have
described the security goals for the TLS proxying architecture
and discussed the extent to which RSA key transport and
signed-DH ciphersuites in TLS meet these security goals.

While we have phrased our study in terms of content
delivery networks, an alternative application of TLS handshake
proxying is to the use of one or more SSL termination proxies
within a single organization, where the private key operation
is outsourced from the SSL termination proxy on the network
boundary to a key server in a safer location inside the network.

8

http://git.openssl.org/gitweb/?p=openssl.git;a=blob;f=ssl/s3_srvr.c;h=20e76cced499b2cc93292eb57e32238c39a0633b;hb=HEAD#l2275


ACKNOWLEDGEMENTS

D.S. was supported by Australian Research Council (ARC)
Discovery Project DP130104304.

REFERENCES

[1] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol
Version 1.2,” RFC 5246 (Proposed Standard), Internet Engineering Task
Force, Aug. 2008. [Online]. Available: http://www.ietf.org/rfc/rfc5246.txt

[2] S. K. Card, G. G. Robertson, and J. D. Mackinlay, “The information
visualizer, an information workspace,” in CHI’91. ACM, 1991, pp.
181–188.

[3] C. Partridge, T. Mendez, and W. Milliken, “Host Anycasting Service,”
RFC 1546 (Informational), Internet Engineering Task Force, Nov. 1993.
[Online]. Available: http://www.ietf.org/rfc/rfc1546.txt

[4] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A.
Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest we
remember: Cold boot attacks on encryption keys,” in USENIX Security
Symposium. USENIX Association, 2008, pp. 45–60.

[5] C. E. Gero, J. N. Shapiro, and D. J. Burd, “Terminating SSL connections
without locally-accessible private keys,” Jun. 20 2013, WO Patent App.
PCT/US2012/070,075.

[6] CloudFlare Inc., “CloudFlare Keyless SSL,” Sep. 2014, https://www.
cloudflare.com/keyless-ssl.

[7] N. Sullivan, “Keyless SSL: The nitty gritty tech-
nical details,” Sep. 2014, https://blog.cloudflare.com/
keyless-ssl-the-nitty-gritty-technical-details/.

[8] C. Lesniewski-Laas and M. F. Kaashoek, “SSL splitting: Securely serving
data from untrusted caches,” Computer Networks, vol. 48, no. 5, pp.
763–779, August 2005.

[9] C. Gaspard, S. Goldberg, W. Itani, E. Bertino, and C. Nita-Rotaru,
“SINE: Cache-friendly integrity for the web,” in 5th IEEE Workshop on
Secure Network Protocols (NPSec) 2009, Oct 2009, pp. 7–12.

[10] T. Moyer, K. Butler, J. Schiffman, P. McDaniel, and T. Jaeger, “Scalable
web content attestation,” IEEE Transactions on Computers, vol. 61,
no. 5, pp. 686–699, May 2012.

[11] M. Backes, R. W. Gerling, S. Gerling, S. Nürnberger, D. Schröder, and
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APPENDIX

A. Security experiment

The following formulation of security for TLS handshake
proxying follows that of provable security for TLS—the
authenticated and confidential channel establishment (ACCE)
protocol model of Jager et al. [18]—but we omit the technical
formalization and instead focus on a more intuitive presentation.

Parties and long-term key generation. The execution envi-
ronment consists of many parties; the parties are divided into
three categories: clients, edge servers, and key servers.

Each key server Ki and every edge server Ej has a long-
term public key / private key pair. Each key server also has an
origin server’s long-term public key / private key pair. Clients
will be considered to be unauthenticated and have no long-term
public key / private key pairs.

We assume that all clients have authentic copies of every
origin server long-term public key, e.g. via the web PKI. We
assume that each key server Ki which is willing to delegate
sessions to edge server Ej has an authentic copy of Ej’s long-
term public key, and vice versa that Ej has an authentic copy
of Ki’s long-term internal public key, for example set up
during edge server configuration/registration or via a public
key infrastructure (possibly a different public key infrastructure
than that used for distribute host public keys to clients).

Sessions. Each party can execute multiple sessions of the
protocol, either concurrently or subsequently. The party main-
tains per-session variables associated with each session and
updates them based on incoming messages and the protocol
specification. Among others, the per-session variables include:

• A status variable, either in-progress, accept, or reject.
• A transcript of the messages sent and received.
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• An identifier of the purported peer(s). For three-party
TLS handshake proxying: a client records the identity
of its purported origin server; an edge server records
the identity of its purported peer key server; a key
server records the identity of its purported peer edge
server and the origin server public key it used.

A complete execution of a session involves interaction
between a client and an edge server (called the client-edge
subsession, interaction between an edge server and a key server
(called the edge-key subsession), and an operation by the key
server using the origin server key.

During execution of a session, eventually a party will set
the per-session status variable to either accept or reject.

Adversary interaction. The adversary controls all commu-
nication between parties: it directs parties to start sessions,
delivers messages to parties, and can reorder, alter, delete, and
create messages. The adversary can also compromise certain
long-term and per-session variables as indicated below.

• Session keys. The adversary can learn the session key
(in TLS, the master secret) in any client-edge subses-
sion or any edge-key subsesssion. Such a subsession
is then considered compromised.

• Long-term private keys. The adversary can learn the
long-term private key of any edge server or key server,
or the origin server private key of any key server. The
corresponding key is then considered compromised.

Security goals. The security goals for TLS handshake proxying
are as listed in Section IV-C: key-server-to-client authentication
(existence and uniqueness of key server session when client
accepts in an uncompromised session); edge-server-to-client
authentication (existence and uniqueness of edge server session
when client accepts in an uncompromised session); and client-
edge-server channel security.

B. Security of TLS handshake proxying—RSA key transport

In the RSA key transport setting, during the TLS hand-
shake the client sends a randomly chosen premaster secret
to the edge server, encrypted under the host public key;
this is the ClientKeyExchange message. The edge server
then establishes an edge-key subsession with the key server
holding the desired origin server key and sends the received
ClientKeyExchange as application data. The key server
decrypts and sends the result back to the edge server. Note that it
is imperative that the key server implements protections against
side channels such as Bleichenbacher’s attack on PKCS#1v1.5
decryption [22], for example by randomizing the response in
constant time as described in the TLS specification.

Here, the matching condition for authentication between
the client and the key server is based solely on the
ClientKeyExchange / premaster secret: the only message
the key server receives is the ClientKeyExchange, and the
only message it sends is the decrypted result—the premaster
secret—so this is the only value on which matching with the
key server is possible.

The matching condition for authentication between the client
and the edge server is based on the entire TLS transcript.

Existence of key server session. Suppose the client accepts
in a session, and the purported peer key server public key
is uncompromised. Since the client accepted, it successfully
verified the Finished message, computing using the master
secret (derived from the client-selected premaster secret). Under
the assumption that the MAC is unforgeable, the master secret
was indeed used to compute the Finished message. Under
the assumption that the PRF used to derive the master secret
is secure, the premaster secret was indeed used to compute
the master secret. Under the assumption that TLS RSA key
transport is a secure TLS-KEM (see Krawczyk et al. [20]), and
that the peer key server public key is uncompromised, it must
be that the peer key server at some point in time decapsulated
the ClientKeyExchange ciphertext and returned the given
premaster secret. Thus a key server session exists.

Existence of edge server session. Suppose the client accepts
in a session, and the purported peer key server public key is
uncompromised. Suppose further that no edge server’s public
key is compromised between when the client sends its first
message and receives the response. As previously identified,
there exists a key server session, and thus the key server
really did decrypt the ClientKeyExchange message using
the key server’s private key. Except with negligible probability,
the client’s premaster secret in the ClientKeyExchange is
unique, and thus was not decapsulated by the key server prior
to the client sending its first message in this session. Since no
edge server’s public key is uncompromised between when the
client sends its first message and receives the response, under
the assumption that edge-key TLS connection provides secure
authentication, only honest edge servers obtain decapsulations
from the key server during this time. Thus an honest edge
server must have existed that requested a decapsulation from
the key server on that ClientKeyExchange message, and so
the edge server has a matching client-edge subsession.

(Non)-Uniqueness of key server session. Uniqueness of key
server sessions cannot be guaranteed. An adversary observing
the messages exchanged between a client and an edge server
can replay the observed ClientKeyExchange message in a
new session to the same (or a different) edge server, who will
then request of the key server that same ClientKeyExchange
be decrypted again using the key server key, resulting in a
second identical session at the key server.

Uniqueness of edge server session. By the same argument
in the existence of an edge server session, during the time
between when the client sends its first messages and receives
the response, only honest edge servers obtain decapsulations
from the key server. Except with negligible probability, honest
edge servers generate unique server random nonces. Thus
there exists a unique edge server session matching the client’s
session when the client verifies the server’s Finished message.

Channel security. Confidentiality and integrity of application
data on the client-edge channel follows immediately from edge-
server-to-client authentication above and the existing channel
security of TLS RSA-key transport ciphersuites [19], [20].

C. Security of TLS handshake proxying—signed-DH

In the signed-Diffie–Hellman setting, the key server signs
the ServerKeyExchange message, which consists of the
client random and server random values and the DH
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parameters, either ServerDHParams or ServerECDHParams
(for finite-field or elliptic curve DH, respectively).

Existence of key server session. Suppose the client accepts
in a session, and the purported peer key server public key
is uncompromised. Since the client accepted, it successfully
verified a signature under the key server’s public key of
the ServerKeyExchange message the client received. Under
the assumption that the signature scheme is unforgeable,
the key server’s private key was indeed used to sign the
ServerKeyExchange message, thus a key server session exists.

Existence of edge server session. Suppose the client accepts
in a session, and the purported peer key server public key is
uncompromised. Suppose further that no edge server’s public
key is compromised between when the client sends its first
message and receives the response. As previously identified,
there exists a key server session, and thus the key server
really did sign the ServerKeyExchange message using the
key server’s private key. Except with negligible probability, the
client’s nonce client random in the ServerKeyExchange is
unique, and thus was not signed by the key server prior to the
client sending its first message in this session. Since no edge
server’s public key is uncompromised between when the client
sends its first message and receives the response, under the
assumption that the edge-key TLS connection provides secure
authentication, only honest edge servers obtain signatures from
the key server during this time. Thus an honest edge server
must have existed that requested a signature from the key server
on that ServerKeyExchange message, and so the edge server
has a matching client-edge subsession.

Uniqueness of key server session. By the same argument
in the existence of an edge server session, during the time
between when the client sends its first messages and receives
the response, only honest edge servers obtain signatures from
the key server. Except with negligible probability, honest edge
servers generate unique server random random nonces. Thus
there exists a unique key server session matching the client’s
session at the time the client verifies the signature.

Uniqueness of edge server session. By the same argument
in the existence of an edge server session, during the time
between when the client sends its first messages and receives the
response, only honest edge servers obtain signatures from the
key server during this time. Except with negligible probability,
honest edge servers generate unique server random random
nonces. Thus there exists a unique edge server session matching
the client’s session at the time the client verifies the signature.

Channel security. Confidentiality and integrity of application
data on the client-edge channel follows immediately from edge-
server-to-client authentication above and the existing channel
security of TLS signed-DH ciphersuites [18], [20].

D. Limitations of security analysis

The analysis in this paper inherits many of the limitations
of previous work on analyzing TLS using the authenticated
and confidential channel establishment framework [18].

It does not cover the use of TLS’s renegotiation feature in
either the client-edge or edge-key subsessions. Renegotiation
has been separately analyzed using an extension of ACCE [24],

which could conceivably be applied to this setting, but would
add a layer of complexity.

It does not cover the use of TLS’s session resumption
feature in either the client-edge or edge-key subsessions. Session
resumption currently does not seem to have the properties it
would need to be proven secure based on the recent triple
handshake attack [23].

It does not cover the use of the same long-term key in
different ciphersuites, for example using the same signing key
with both finite field and elliptic curve Diffie–Hellman, or
using the same RSA key with both signed-DH ciphersuites and
RSA key transport ciphersuites, both of which are common
in practice. Some combinations are known to be insecure as
demonstrated by the signed-DH/signed-ECDH cross-protocol
attack by Mavrogiannopoulos et al. [25]. Some progress has
been made on specific combinations [26] and on developing
a more generic approach [27], but these cannot in general
overcome the aforementioned cross-protocol attack without
changes to the TLS protocol.
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