
Efficient Modular Exponentiation-based Puzzles
for Denial-of-Service Protection

Jothi Rangasamy, Douglas Stebila, Lakshmi Kuppusamy, Colin Boyd, and
Juan Gonzalez Nieto

Information Security Institute, Queensland University of Technology,
GPO Box 2434, Brisbane, Queensland 4001, Australia

{j.rangasamy,stebila,l.kuppusamy,c.boyd,j.gonzaleznieto}@qut.edu.au

Abstract. Client puzzles are moderately-hard cryptographic problems
— neither easy nor impossible to solve — that can be used as a counter-
measure against denial of service attacks on network protocols. Puzzles
based on modular exponentiation are attractive as they provide impor-
tant properties such as non-parallelisability, deterministic solving time,
and linear granularity. We propose an efficient client puzzle based on
modular exponentiation. Our puzzle requires only a few modular multi-
plications for puzzle generation and verification. For a server under de-
nial of service attack, this is a significant improvement as the best known
non-parallelisable puzzle proposed by Karame and Čapkun (ESORICS
2010) requires at least 2k-bit modular exponentiation, where k is a secu-
rity parameter. We show that our puzzle satisfies the unforgeability and
difficulty properties defined by Chen et al. (Asiacrypt 2009). We present
experimental results which show that, for 1024-bit moduli, our proposed
puzzle can be up to 30× faster to verify than the Karame-Čapkun puzzle
and 99× faster than the Rivest et al.’s time-lock puzzle.
Keywords: client puzzles, time-lock puzzles, denial of service resistance,
RSA, puzzle difficulty

1 Introduction

Denial-of-Service (DoS) attacks are a growing concern due to the advance-
ment in information technology and its application to electronic commerce. The
main goal of DoS attacks is to make a service offered by a service provider
unavailable by exhausting the service provider resources. In recent years, DoS
attacks disabled several Internet e-commerce sites including eBay, Yahoo!, Ama-
zon and Microsoft’s name server [17].

Since millions of computers are connected through the Internet, DoS attacks
on any of these systems would lead to a large scale impact on the whole network.
Many essential services such as communications, defense, health systems, bank-
ing and financial systems have become Internet-based applications. There is an
immense need for keeping these services alive and available on request. However
mounting a DoS attack is very easy for the sophisticated attackers while defend-
ing them is very hard for the victim servers. A promising way to deal with this

problem is for a defending server to identify and segregate the malicious requests
as early as possible.

Client puzzles, also known as proofs of work, can guard against resource
exhaustion attacks such as DoS attacks and spam [2,8,11]. When client puzzles
are employed, a defending server will process a client’s request only after the
client has provided the correct solution to its puzzle challenge. In this way, a
client can prove to the server its legitimate intentions in getting a connection.
Although employing client puzzles adds an additional cost for legitimate clients,
a big cost will be imposed on an attacker who is trying to make multiple connec-
tions. In this case, the attacker would need to invest its own resources in solving
a large number of puzzles before exhausting the server resources.

1.1 Puzzle Properties

The essential property of a client puzzle is that it be difficult to solve: not
impossible, but not too easy, either. Many cryptographic puzzles are based on
inverting a hash function [3,9,11].

Puzzles based on modular exponentiation have the potential to provide ad-
ditional properties:

– Non-parallelisability. A client puzzle is called non-parellelisable if the
time to solve the puzzle cannot be reduced by using many computers in
parallel. This property ensures that a DoS attacker cannot divide a puzzle
into multiple small tasks and therefore gains no advantage in puzzle solving
with the large number of machines it may have in its control.

– Deterministic solving-time. If the puzzle issuing server has specified a
value as a difficulty parameter, then a client needs to do at least the specified
number of operations to solve a puzzle. This will help the server decide the
minimum work each client must do before getting a connection. Many puzzles
in contrast, only determine the average work required to obtain a solution.

– Fine granularity. A puzzle construction achieves finer granularity if the
server is able to set the difficulty level accurately. That is, the gap between
two adjacent difficulty levels should be small. This property helps servers
switch between different difficulty levels easily. If there is a large gap between
two difficulty levels, then increasing the difficulty to the next level might have
an impact on computationally-poor legitimate clients.

It is imperative that both the puzzle generation and solution verification
algorithms add only minimal computation and memory overhead to the server.
Otherwise, this puzzle mechanism itself may become a target for resource exhaus-
tion DoS attacks when a malicious client sends a large number of fake requests
for puzzle generation or a large number of puzzle solutions for verification.

Rivest et al. [18] described a concrete modular exponentiation puzzle based
on the RSA modulus factorisation problem. This was the first puzzle to provide
the three properties listed above: non-parallelisability, deterministic solving time,
and finer granularity. However, the main disadvantage of these puzzles is that

Puzzle Verification Verification Time (µs)
Cost 512-bit n 1024-bit n

Rivest et al. [18] |n|-bit mod. exp. 474.68 2903.99
Karame-Čapkun [12] 2k-bit mod. exp. 263.35 895.17
This paper 3 mod. mul. 14.75 29.24

Table 1. Verification costs and timings (in microseconds) for modular exponentiation-
based puzzles; n is an RSA modulus, k is a security parameter. Timings are for 1024-
bit modulus n with k = 80 and for 512-bit modulus n with k = 56, both with puzzle
difficulty 1 million.

they require a busy server to perform computationally intensive exponentiation
to verify solutions. Recently, Karame and Čapkun [12] improved the verification

efficiency of Rivest et al.’s puzzle by a factor of |n|2k for a given RSA modulus
n, where k is the security parameter. More details on these two puzzles will be
provided in Section 2.

Although Karame and Čapkun’s performance gain in verification cost is im-
pressive, it is still sufficiently expensive that it could be burdensome on a de-
fending server, as verification still requires modular exponentiations. This is the
main reason preventing modular exponentiation-based puzzles being deployed
widely, despite having some attractive characteristics. Construction of modu-
lar exponentiation-based puzzles which avoid a big modular exponentiation for
puzzle generation and solution verification has not been attained until now.

1.2 Contributions

1. We propose an efficient modular exponentiation-based puzzle which achieves
non-parallelisability, deterministic solving time, and finer granularity. Our
puzzle can be seen as an efficient alternative to Rivest et al.’s time-lock puzzle
[18]. Our puzzle requires only a few modular multiplications to generate and
verify puzzle solutions. The verification costs and timings for our puzzle and
other puzzles of the same type are presented in Table 1.

2. We analyse the security properties of our puzzle in the puzzle security model
of Chen et al. [7] and show that our puzzle is unforgeable and difficult.

3. In order to validate the performance of our puzzle, we give experimental
results and compare them with the performances of Rivest et al.’s time-lock
puzzle [18] and Karame and Čapkun’s puzzle [12], which is the most efficient
non-parallelisable puzzle in the literature. Our results suggest that our puz-
zle reduces the solution verification time by approximately 99 times when
compared to Rivest et al.’s time-lock puzzle and 30 times when compared to
Karame and Čapkun, for 1024-bit moduli.

Organization of paper: The rest of the paper is organized as follows. Section 2
presents the background and motivation for our work. Section 3 describes our
proposed puzzle and Section 4 analyses the security properties of the proposed
puzzle in the Chen et al. model. Section 5 presents our experimental results

validating the efficiency of the proposed puzzle scheme and we conclude the
paper in Section 6.

2 Background: Modular Exponentiation-Based Puzzles

In this section, we review known modular exponentiation-based puzzles and
follow the definition of a client puzzle proposed by Chen et al. [7].

Notation. If n is an integer, then we use |n| to denote the length in bits of n,
and φ(n) is the Euler phi function of n, which is equivalent to the size of the
multiplicative group Z∗n. We denote the set {a, . . . , b} of integers by [a, b]. We use
x←r S to denote choosing x uniformly at random from S. If A is an algorithm,
then x← A(y) denotes assigning to x the output of A when run with the input
y. If k is a security parameter, then negl(k) denotes a function that is negligible
in k (asymptotically smaller than the inverse of any polynomial in k). By p.p.t.
algorithm, we mean probabilistic polynomial time algorithm.

Client Server

Off-line Phase

Setup(1k)

1. (n, p, q)← GenRSA(1k)

2. d←r [2k, 2k+1] such that
e = d−1 mod φ(n) exists and e ≥ n2.

3. s← (e, d, φ(n))
4. Select R ≥ e, |R| = Q.

On-line Phase

request−−−−−−−−−−−−→ GenPuz(s,Q,Nc)

1. Z ←r {0, 1}k
2. X ← HMAC(d, Z)
3. v ← HMAC(d,X), |v| ≥ k, gcd(v, d) = 1
4. K ← e · v − (R mod φ(n)).

FindSoln(puz, t)
puz←−−−−−−−−−−−− 5. puz ← (n,R,K,Z,X)

1. Y1 ← XR mod n
2. Y2 ← XK mod n

Y1, Y2, puz−−−−−−−−−−−−→ VerAuth(s, puz), VerSoln(s, puz, soln)

1. X ← HMAC(d, Z)
2. v ← HMAC(d,X)

3. Verify (Y1 · Y2)d
?≡ Xv mod n

Fig. 1. KCPuz: Karame-Čapkun’s Variable-Exponent Client Puzzle [12]

2.1 Rivest et al.’s puzzle

Given a RSA modulus n, Rivest et al.’s puzzle [18] requires |n|-bit exponentiation
to verify puzzle solutions. In detail, the server generates two RSA primes p and q,
and computes the associated RSA modulus n = pq and the Euler totient function
φ(n) = (p− 1) · (q− 1). Then sets the difficulty level Q or the amount of work a
client needs to do. Now, the server picks an integer a←r Z∗n and sends the client

the tuple (a,Q, n). The client’s task is to compute and return b ← a2
Q

mod n.

The server first computes c = 2Q mod φ(n) and then checks if ac
?≡ b mod n.

Here the server can compute c once and use it for all the solution verifications
unless it changes the difficulty level Q. With the trapdoor information φ(n), the
server is able to verify the solution in one |n|-bit exponentiation whereas the
client should perform Q repeated squarings and typically Q� |n|.

2.2 Karame-Čapkun puzzle

Recently, Karame and Čapkun [12] reduced |n|-bit exponentiation in time-lock
puzzle verification to 2k-bit exponentiation modulo n, thereby significantly re-

ducing the computational burden of the server by a factor of |n|2k , where k is a

security parameter. The Karame and Čapkun puzzle KCPuz is depicted in Fig-
ure 1. Karame and Čapkun showed that their puzzle is unforgeable and difficult
in the puzzle security model of Chen et al. [7]. In this paper, we are considering
the variable-exponent version of Karame and Čapkun’s puzzle.

Although the verification cost is improved significantly in KCPuz, the server
still needs to engage in at least 2k-bit exponentiation for each puzzle solution
it receives. Since it is expected that the defending server may receive a large
number of fake requests/solutions, puzzle generation and solution verification
should be as efficient as possible. Otherwise this mitigation mechanism itself
opens door for resource exhaustion DoS attacks when a malicious client sends
a number of fake requests/solutions for puzzles triggering the server engage in
those expensive operations.

Parallelisability. Puzzle solving in KCPuz can be partially parallelised by de-
composing the exponent R into multiple parts. For example, consider a mali-
cious client C with two compromised machines, namely M1 and M2, under its
control. In order to parallelise the computation of xR mod n, C first decom-
poses R into two parts R1 and R2 such that R = R1||R2, where || denotes the

concatenation. Then C gives R1||0
`
2 to M1 and R2 to M2, along with the pub-

lic values (X,n). Now, using the square and multiply algorithm, M1 computes

XR1||0
`
2 mod n in 5`

4 modular multiplications and M2 computes XR2 mod n in
3`
4 modular multiplications. Note that, without decomposition, 3`

2 modular mul-
tiplications would have been required if the malicious client chose to compute
XR mod n itself. Since M1 and M2 could work in parallel, the time taken by

C to compute XR mod n is the time taken by M1 to compute XR1||0
`
2 mod n,

which requires to do more operations than M2. Therefore, this decomposition
saves the malicious client 1

6 of the total time needed to solve the puzzle. This
parallelisation via exponent decomposition is gainful only if R is not a power of
2. Rivest et al. set R to be power of 2 to achieve non-parallelisability. Moreover
when |R| � 220 bits and R = 2Q for some Q ∈ N+, sending Q for each puzzle
instead of R will save communication cost as well.

Granularity. Unlike Rivest et al.’s modular exponentiation-based puzzle, the
Karame-Čapkun puzzle does not provide fine control over granularity of difficulty
levels. In KCPuz, a client is given the pair (K,R) where K ← e·v−(R mod φ(n))
and therefore for security reasons, R must be large enough so that R > n.
This condition rules out difficulty levels between 0 and n. Also, if R is the
current difficulty level, then the next difficulty level R′ must satisfy the following:
R′

R ≥ n
2. This implies that there will be a large gap between the two successive

difficulty levels. Hence, KCPuz does not support fine granularity.

Example parameter sizes. In a DoS scenario, a client is given a puzzle whose
hardness is typically set between 0 to 225 operations. Since a client needs to
perform at most 225 for each puzzle, the 40-bit security level is enough for the
puzzle scheme and is higher than the work needed to solve a puzzle. Lenstra and
Verheul [14] suggest using a 512-bit RSA modulus n which is widely believed to
match the 56-bit security of Data Encryption Standard (DES). Since |n| = 512,

|R| ≥ 512. Suppose R = 2512. From R′

R ≥ n2, the possible values for the next
two difficulty levels are R′ = 21536 and R′′ = 22560.

In this work, we give an efficient modular exponentiation-based puzzle which
achieves both non-parallelism and finer granularity.

3 Our Client Puzzle Protocol

In this section, we present a non-parallelisable client puzzle scheme that requires
only a few modular multiplications for puzzle generation and solution verifica-
tion. First we review the cryptographic ingredients required and then present
our puzzle construction.

3.1 Tools

Our puzzle construction makes use of algorithm GenRSA that generates an RSA-
style modulus n = pq as follows:

Definition 1 (Modulus Generation Algorithm). Let k be a security pa-
rameter. A modulus generation algorithm is a probabilistic polynomial time al-
gorithm GenRSA that, on input 1k, outputs (n, p, q) such that n = pq and p and
q are k-bit primes.

In our puzzle generation algorithm, the server needs to produce a pair (x, xu)
for each puzzle. Since the generation of these pairs are expensive, we utilise a
technique due to Boyko et al. [5] for efficient generation of many pairs (xi, x

u
i mod

n) for a fixed u using a relatively small amount of pre-computation.

Definition 2 (BPV Generator). Let k, `, and N , with N ≥ ` ≥ 1, be param-
eters. Let n ← GenRSA(1k) be an RSA modulus. Let u be an element in Zφ(n)
of length m. A BPV generator consists of the following two algorithms:

– BPVPre(u, n,N): This is a pre-processing algorithm that is run once. The
algorithm generates N random integers α1, α2, . . . , αN ←r Z∗n and computes
βi ← αi

u mod n for each i. Finally, it returns a table τ ← ((αi, βi))
N
i=1.

– BPVGen(n, `, τ): This is run whenever a pair (x, xu mod n) is needed. Choose
a random set S ⊆r {1, . . . , N} of size `. Compute x ←

∏
j∈S αj mod n. If

x = 0, then stop and generate S again. Otherwise, compute X ←
∏
j∈S βj mod

n and return (x,X). In particular, the indices S and the corresponding pairs
((αj , βj))j∈S are not revealed.

Indistinguishability of the BPV Generator. Boyko and Goldwasser [4] and
Shparlinski [19] showed that the values xi generated by the BPV generator are
statistically close to the uniform distribution. To analyse the security properties
of the proposed puzzle, we use the following results by Boyko and Goldwasser
[4, Chapter 2]. Let N be the number of pre-computed pairs (αi, βi) such that
αi’s are chosen independently and uniformly from [1, n] and βi = αui mod n.
Each time a random set S ⊆ {1, . . . N} of ` elements is chosen and a new pair
(x,X) is computed such that x =

∏
j∈S αj mod n and X =

∏
j∈S βj mod n.

Then, with overwhelming probability on the choice of αi’s, the distribution of x
is statistically close to the uniform distribution of a randomly chosen x′ ∈ Z∗n.
Here we also note that although BPV outputs a pair (x, xu), only x is made
available to clients and xu is kept secret by the server. That is, each time clients
are given the pair (x, 1), not (x, xu).

Theorem 1. [4, Chapter 2] If α1, . . . , αN are chosen independently and uni-
formly from Z∗n and if x =

∏
j∈S αj mod n is computed from a random set

S ⊆ {1, . . . N} of ` elements, then the statistical distance between the computed

x and a randomly chosen x′ ∈ Z∗n is bounded by 2−
1
2 (log (N

`)+1). That is,∣∣∣∣∣∣Pr

∏
j∈S

αj = x mod n

− 1

φ(n)

∣∣∣∣∣∣ ≤ 2−
1
2 (log (N

`)+1) .

Parameters for BPV. As discussed in Section 2, in a DoS scenario, the diffi-
culty level Q for a puzzle is typically set between 0 and 225 operations. There-
fore, it can be anticipated that factoring of n and hence computing φ(n) for
solving puzzles easily, will be much more difficult than performing Q squarings

as Q � n when Q ≤ 225 and |n| ≥ 512. Lenstra and Verheul [14] suggest us-
ing a 512-bit RSA modulus n to match the 56-bit security of Data Encryption
Standard (DES). Since a client needs to perform at most 225 for each puzzle, the
40-bit security level could be enough for the puzzle scheme and hence breaking
the scheme is much harder than solving a puzzle.

Boyko et al.[4,5] suggest to set N and ` so that subset product problem is in-
tractable and birthday attacks becomes infeasible. To achieve the above security
level, we can select N and ` such that

(
N
`

)
> 240. Boyko et al. [4,5] suggest setting

N = 512 and ` = 6 for the BPV generator. Alternatively, we could achieve this
with N = 2500 and ` = 4; this increases the amount of precomputation required
in BPVPre but reduces the number of modular multiplications performed online
in BPVGen from 12 to 8.

Client (C) Server (S)

Off-line Phase

Setup(1k)

1. (n, p, q)← GenRSA(1k)
2. d← 3−1 mod φ(n)
3. Set the difficulty level Q.
4. u← d− (2Q mod φ(n))
5. τ = ((αi, βi))

N
i=1 ← BPVPre(u, n,N)

6. ρ←r {0, 1}k
7. s← (ρ, d, φ(n), τ)
8. params← (Q,n)

On-line Phase

1. random NC
NC−−−−−−−−−−−−→ GenPuz(s,Q,NC)

1. (x,X)← BPVGen(n, `, τ)

2. NS ←r {0, 1}k
3. Z ← Hρ(NC , NS , IPC , IDS , x,Q)

FindSoln(NC , puz, t)
NC , puz←−−−−−−−−−−−− 4. puz ← (n, x,NS , Q, Z)

1. y ← x2
Q

mod n

2. soln← y
NC , puz, soln−−−−−−−−−−−−→ VerAuth(s, puz)

1. Verify Z
?
= Hρ(NC , NS , IPC , IDS , x,Q)

VerSoln(s, puz, soln)

1. Verify (X · soln)3
?≡ x mod n

Fig. 2. RSAPuz: A new client puzzle based on modular exponentiation

3.2 The Proposed Puzzle: RSAPuz

The main idea behind our puzzle construction is: given a RSA modulus n, an

integer Q and X ∈ Z∗n, the task of a client is to compute X2Q mod n.
Our client puzzle RSAPuz is presented in Fig 2 as an interaction between a

server issuing puzzles and a client solving them. RSAPuz is parameterized by a
security parameter k and a difficulty parameter Q. In practice, a server using
puzzles as a DoS countermeasure can vary Q based on the severity of the attack
it is experiencing. However once a difficulty level is set, it is increased only if the
server still receives a large number of requests with correct puzzle solutions.

In RSAPuz, the server does the following:

– Puzzle pre-computation. Generating (n, p, q) and computing d is a one
time process. Whenever a server is required to change the difficulty param-
eter Q, it selects an integer R such that |R| = Q and computes u. Then
it runs the BPV pre-processing step with inputs (u, n,N) and obtains N
pairs of (αi, βi). Since all the required pre-computations are done off-line,
the defending server can be more effective on-line against DoS attacks.

In a DoS setting, an attacker could mount a resource depletion attack by ask-
ing the server to generate many puzzles and to verify many fake puzzle solutions.
Hence the following algorithms run online by the server many times should be
very efficient to resist such flooding attacks.

– Puzzle generation. The dominant cost in puzzle generation is the BPV
pair generation BPVGen, which requires 2(` − 1) modular multiplications:
` − 1 to compute x and ` − 1 to compute X. There is also a single call
to the pseudo-random function Hρ to compute the authentication tag Z. As
suggested by Boyko et al., ` could be set between 4 and 16 so that our puzzle
requires only 8 modular multiplications in the best case.

– Puzzle authenticity verification. Puzzle authenticity verification is
quite cheap, requiring just a single call to the pseudo-random function H to
verify the authentication tag Z.

– Puzzle verification. To verify correctness of a solution, the server has to
perform only 3 modular multiplications.

Our puzzle construction dramatically reduces the puzzle verification cost
incurred by the server and is the only modular exponentiation-based puzzle that
does not require a big exponentiation to be performed by the server on-line. The
efficiency of our puzzle is compared with the efficiency of Karame-Čapkun and
Rivest et al.’s puzzles in Section 5.

After receiving the puzzle, the client finds the solution to the puzzle as follows:

– Puzzle solving. One typical method for a legitimate client to implement
the FindSoln algorithm is to use square-and-multiply algorithm, which is
the most commonly used algorithm for computing modular exponentiations.
Upon receiving a puzzle puz from the server with an integer Q, the client

computes y as x2
Q

mod n. We note however that a client could also choose
to factor n first and then can solve the puzzle efficiently.

Puzzle Non-parallelisable Finer Puzzle Solving Generation Verification
& Deterministic Granularity Cost Cost Cost
Solving Time

TLPuz [18] Yes Yes Q mod. mul. 1 hash
1 hash

|n|-bit mod. exp.

KCPuz [12] Yes No
O(Q) mod. mul. 2 HMAC (4 hash) 2 HMAC (4 hash)
O(|n2|) mod. mul. 1 gcd 2k-bit mod. exp.

RSAPuz Yes Yes Q mod. mul.
1 hash 1 hash

2(`− 1) mod. mul. 3 mod. mul.

Table 2. Puzzle properties and operation counts for puzzle solving, generation and
verification. Q is the difficulty level, n is an RSA modulus, k is a security parameter,
and ` is a small integer.

The best known method to solve our puzzle is to perform Q repeated squar-
ings and this is an inherently sequential process [10,12,18]. Therefore a client
needs to do exactly Q sequential modular multiplications to correctly solve the
given puzzle, thereby achieving deterministic solving time property and non-
parallelisability. We also get finer granularity as Q can be set to any positive
integer regardless of the previously used difficulty values.

In Table 2, we compare the puzzle properties and asymptotic costs for FindSoln,
GenPuz and VerSoln algorithms for the non-parallelisable puzzles examined in
this paper. In particular, we compare the performance of the proposed puz-
zle RSAPuz with that of Rivest et al.’s time-lock puzzle (TLPuz) and Karame-
Čapkun’s variable exponent puzzle (KCPuz).

Remark 1. In RSAPuz as illustrated in Figure 2, the server requires a short-
term secret X for verifying the puzzle solution. Storing X for each puzzle may
introduce a memory-based DoS attack on the server. Fortunately, the server may
avoid this type of attack by employing stateless connections [1] to offload storage
of X to the client. That is, the server can use a long-term symmetric key sk to
encrypt X and send it along with each puzzle. Then the client has to send back
this encrypted value while returning the solution to the puzzle. In this way, the
server remains stateless and obtains X by decrypting the encrypted value using
the same key sk. With an efficient symmetric encryption algorithm, the server
will not experience any significant computational burden.

4 Security Analysis of RSAPuz

We analyse the security properties of RSAPuz using the security model of Chen
et al. [7] which appears in Appendix A. In particular, we show that RSAPuz
satisfies the unforgeability and difficulty properties introduced by Chen et al.
Since we use a secure pseudo-random function H in puzzle generation, proof of
unforgeability for RSAPuz is quite straightforward and is given in Appendix B.1.

512-bit modulus, k = 56 1024-bit modulus, k = 80
Puzzle Setup (ms) GenPuz (µs) FindSoln (s) VerSoln (µs) Setup (ms) GenPuz (µs) FindSoln (s) VerSoln (µs)

Difficulty: 1 million

TLPuz [18] 13.92 4.80 1.54 474.68 56.10 4.86 4.13 2903.99
KCPuz [12] 11.52 8.37 1.59 263.35 42.30 8.66 4.27 895.17
RSAPuz 1401.14 16.66 1.54 14.75 8510.92 35.15 4.29 29.24

Difficulty: 10 million

TLPuz [18] 49.99 4.80 15.17 474.83 103.95 4.87 42.62 2917.25
KCPuz [12] 28.95 8.37 15.18 265.28 85.09 8.62 43.31 907.03
RSAPuz 1419.78 16.66 15.34 14.53 8669.75 34.72 43.08 28.97

Difficulty: 100 million

TLPuz [18] 416.29 4.81 157.10 470.61 607.87 4.84 429.31 2924.01
KCPuz [12] 218.76 8.35 160.97 259.39 327.46 8.70 426.04 899.00
RSAPuz 1609.83 16.76 158.22 14.88 8966.74 34.76 422.58 29.18

Table 3. Timings for modular exponentiation-based puzzles. For RSAPuz, N = 2500
and ` = 4.

4.1 Difficulty of RSAPuz

The time-lock puzzle was first proposed in 1996 and to date the best known
method of solving the puzzle is sequential modular squaring, provided that fac-
toring the modulus is more expensive. Indeed, it has been widely accepted that

given a large RSA modulus n, the computation of a2
Q

mod n can be obtained by
Q repeated squarings and no algorithm with better complexity than Q squarings
is known [10,12,15,18].

Karame and Čapkun proved that their puzzle KCPuz is εk,R(t)- difficult in
the Chen et al. model, where

εk,R(t) = min

{⌊
t

logR

⌋
+O

(
1

2k

)
, 1

}
for all probabilistic algorithms A running in time at most t.

If a solver knows a multiple of φ(n), then it can compute φ(n) and the factors
of n very efficiently [16]. Then the solver can efficiently compute xR mod n by
computing c ← R mod φ(n) first and then computing xc mod n. However, it
is computationally infeasible for a client to compute a multiple of φ(n) from
the transcripts of the puzzle scheme, so computing xR mod n requires at least
O(logR) modular multiplications. Hence, the success probability of solving the
puzzle is bounded by εk,R(t) for any algorithm running in time at most t.

Detailed examination of Karame and Čapkun’s proof reveals that they are
essential making the assumption that the best approach for solving the time-
lock puzzle is sequential modular squaring and multiplication. Moreover, their
proof further makes the assumption that the time-lock puzzle is difficult in the
Chen et al. model, in other words, when the adversary is allowed to see valid
puzzle-solution pairs returned from the CreatePuzSoln query.

We show in the following theorem that our puzzle RSAPuz is difficult in the
Chen et al. model [7] as long as Rivest et al.’s time-lock puzzle is difficult. Due
to lack of space the proof of the theorem appears in Appendix B.2.

Theorem 2 (Difficulty of RSAPuz). Let k be a security parameter and let
Q be a difficulty parameter. Let GenRSA be a modulus generation algorithm. If
TLPuz with GenRSA is εk,Q(t)-difficult, then RSAPuz is ε′k,Q(t)-difficult for all
probabilistic algorithms A running in time at most t, where

ε′k,Q(t) = 2 · εk,Q (t+ (qC + 1) (2(`− 1)TMul) + c) .

Here, qC is the number of CreatePuzSoln queries and TMul is the time complexity
for computing a multiplication modulo n, and c is a constant.

5 Performance Comparison

Table 3 presents timings from an implementation of these puzzle variants for
both 512-bit and 1024-bit RSA moduli with k = 56 and k = 80, respectively,
for puzzle difficulty levels 1 million, 10 million, and 100 million. The software
was implemented using big integer arithmetic from OpenSSL 0.9.8` and run on
a single core of a 3.06 GHz Intel Core i3 with 4GB RAM, compiled using gcc

-O2 with architecture x86 64.
In the 512-bit case, our puzzle reduces the solution verification time by ap-

proximately 32 times when compared to TLPuz and 17 times when compared to
KCPuz. For the 1024-bit case, the gain in the verification time is approximately
99 times when compared to TLPuz and 30 times when compared to KCPuz.

Since VerSoln cost in RSAPuz is independent of k the security parameter,
the verification gain increases as the size of RSA moduli increases. Note that,
for both the moduli, the puzzle generation algorithm GenPuz is 2 to 7 times
slower than the GenPuz in TLPuz and KCPuz. However, the cumulative puzzle
generation and puzzle verification time in RSAPuz is still substantially less than
in TLPuz or KCPuz. Furthermore, GenPuz cost in RSAPuz can still be improved
by reducing ` from 4 to 2 and increasing the number N of pairs precomputed
by BPVPre in the puzzle setup algorithm.

6 Conclusion

In this paper, we presented the most efficient non-parallelisable puzzle based on
RSA. A DoS defending server needs to perform only 2(`− 1) modular multipli-
cations online, where ` could be as low as 2, for a given RSA modulus. For the
comparable difficulty level, the best known non-parallelisable puzzle requires a
busy server perform online at least 2k-bit modular exponentiation, where k is a
security parameter.

We have also proved that the proposed puzzle satisfies the two security no-
tions proposed by Chen et al. In particular, we have reduced the difficulty of
solving our puzzle to the difficulty of solving Rivest et al.’s time-lock puzzle.

Experimental results show that our puzzle reduces the solution verification
time by a factor of 99 when compared to Rivest et al.’s time-lock puzzle and a
factor of 30 when compared to Karame and Čapkun puzzle, for 1024-bit moduli.

Acknowledgements. The authors are grateful to anonymous referees for their
comments. This work is supported by Australia-India Strategic Research Fund
project TA020002.

References

1. T. Aura and P. Nikander. Stateless connections. In Y. Han, T. Okamoto, and
S. Qing, editors, Proc. 1st International Conference on Information and Commu-
nications Security (ICICS) 1997, volume 1334 of LNCS, pages 87–97. Springer,
1997.

2. T. Aura, P. Nikander, and J. Leiwo. DoS-resistant authentication with client
puzzles. In B. Christianson, B. Crispo, J. A. Malcolm, and M. Roe, editors, Secu-
rity Protocols: 8th International Workshop, volume 2133 of LNCS, pages 170–177.
Springer, 2000.

3. A. Back. Hashcash: A denial-of-service countermeasure. 2002. Available as http:

//www.hashcash.org/papers/hashcash.pdf.
4. V. Boyko. A pre-computation scheme for speeding up public-key cryptosystems.

Master’s thesis, Massachusetts Institute of Technology, 1998. Available as http:

//hdl.handle.net/1721.1/47493.
5. V. Boyko, M. Peinado, and R. Venkatesan. Speeding up discrete log and factoring

based schemes via precomputations. In K. Nyberg, editor, Advances in Cryptology
– Proc. EUROCRYPT ’98, volume 1403 of LNCS, pages 221–235. Springer, 1998.

6. R. Canetti, S. Halevi, and M. Steiner. Hardness amplification of weakly verifiable
puzzles. In Kilian [13], pages 17–33.

7. L. Chen, P. Morrissey, N. P. Smart, and B. Warinschi. Security notions and generic
constructions for client puzzles. In M. Matsui, editor, Advances in Cryptology –
Proc. ASIACRYPT 2009, volume 5912 of LNCS, pages 505–523. Springer, 2009.

8. C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In
E. F. Brickell, editor, Advances in Cryptology – Proc. CRYPTO ’92, volume 740
of LNCS, pages 139–147. Springer, 1992.

9. W. Feng, E. Kaiser, and A. Luu. Design and implementation of network puzzles.
In INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings IEEE, volume 4, pages 2372–2382. IEEE,
2005.

10. D. Hofheinz and D. Unruh. Comparing two notions of simulatability. In Kilian
[13], pages 86–103.

11. A. Juels and J. Brainard. Client puzzles: A cryptographic countermeasure against
connection depletion attacks. In Proc. Network and Distributed System Security
Symposium (NDSS) 1999, pages 151–165. Internet Society, 1999.

12. G. Karame and S. Čapkun. Low-cost client puzzles based on modular exponenti-
ation. In D. Gritzalis, B. Preneel, and M. Theoharidou, editors, Proc. ESORICS
2010, volume 6345 of LNCS, pages 679–697. Springer, 2010.

13. J. Kilian, editor. Theory of Cryptography Conference (TCC) 2005, volume 3378 of
LNCS. Springer, 2005.

14. A. Lenstra and E. Verheul. Selecting cryptographic key sizes. J. Cryptology,
14(4):255–293, 2001.

15. W. Mao. Timed-release cryptography. In S. Vaudenay and A. M. Youssef, editors,
Proc. Selected Areas in Cryptography (SAC) 2001, volume 2259 of LNCS, pages
342–358. Springer, 2001.

http://www.hashcash.org/papers/hashcash.pdf
http://www.hashcash.org/papers/hashcash.pdf
http://hdl.handle.net/1721.1/47493
http://hdl.handle.net/1721.1/47493

16. G. L. Miller. Riemann’s hypothesis and tests for primality. In Conference Record
of Seventh Annual ACM Symposium on Theory of Computation (STOC), 5-7 May
1975, Albuquerque, New Mexico, USA, pages 234–239. ACM, 1975.

17. D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and S. Savage. Inferring inter-
net denial-of-service activity. ACM Transactions on Computer Systems (TOCS),
24(2):115–139, 2006.

18. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release
crypto. Technical Report TR-684, MIT Laboratory for Computer Science, March
1996.

19. I. Shparlinski. On the uniformity of distribution of the RSA pairs. Mathematics
of Computation, 70(234):801–808, 2001.

20. D. Stebila, L. Kuppusamy, J. Rangasamy, C. Boyd, and J. M. González Nieto.
Stronger difficulty notions for client puzzles and Denial-of-Service-Resistant pro-
tocols. In A. Kiayias, editor, Topics in Cryptology – The Cryptographers’ Track
at the RSA Conference (CT-RSA) 2011, volume 6558 of LNCS, pages 284–301.
Springer, 2011.

21. D. Stebila and B. Ustaoglu. Towards denial of service resilient key agreement
protocols. In C. Boyd and J. M. González Nieto, editors, Proc. 14th Australasian
Conference on Information Security and Privacy (ACISP) 2009, volume 5594 of
LNCS, pages 389–406. Springer, 2009.

A Security Notions for Client Puzzles

Several computational security models for the difficulty of client puzzles have
been proposed [6,7,20,21]. In this section, we briefly describe the definition and
security notions for a client puzzle proposed by Chen et al. [7].

Definition 3. A client puzzle Puz is a tuple consisting of the following algo-
rithms:

– Setup is a p.p.t. setup algorithm that accepts the security parameter k as
input and returns output as follows:

• Selects the key space S, the hardness space T , the string space X, the
puzzle instance space I and puzzle solution space P .

• Selects a secret s←r S.
• Selects the puzzle parameters params ← (S, T,X, I, P) required for the

client puzzle.
• Returns (params, s)

– GenPuz is a p.p.t. puzzle generation algorithm that returns a puzzle instance
puz ∈ I on input s ∈ S,Q ∈ T and a ∈ X.

– FindSoln is a probabilistic solution finding algorithm that on input puz ∈ I
returns a potential solution soln ∈ P after at most t clock cycles of execution.

– VerAuth is a puzzle authenticity verification algorithm that accept inputs s ∈
S and puz ∈ I and returns true or false.

– VerSoln is a deterministic solution verification algorithm that accept inputs
s ∈ S, puz ∈ I and a solution soln ∈ P and returns true or false.

In the following unforgeability experiment, the adversary is allowed to query the
CreatePuz oracle by choosing a str and a puzzle difficulty level Q on its own.
This is to ensure that the adversary cannot create a valid looking puzzle even
after seeing puzzles with different difficulty levels, .

Definition 4 (Puzzle Unforgeability [7]). Let Puz be a client puzzle, k be a
security parameter and A be a probabilistic algorithm. The unforgeability exper-
iment ExpUF

A,Puz(k) is defined as follows:

1. Run the set up algorithm Setup(1k) to obtain s and params.
2. Run the adversary Awith input params. The adversary has oracle access to

CreatePuz(·) and CheckPuz(·), which are answered as follows:
– CreatePuz(str,Q): Generate a puzzle puz by running the GenPuz(s,Q, str)

algorithm. Return puz to A.
– CheckPuz(puz): If any of the previously made CreatePuz(str) query did

not output puz and VerAuth(s, puz) = true then stop the experiment and
output 1. Otherwise, return 0 to A.

We say that A wins the game if ExpUF
A,Puz(k) = 1 and loses otherwise. The ad-

vantage of A is defined as:

AdvUF
A,Puz(k) = Pr

(
ExpUF
A,Puz(k) = 1

)
.

If this advantage is negligible in k for all probabilistic algorithms A running in
time polynomial in k, then a puzzle Puz is said to be unforgeable.

In the following difficulty experiment, the adversary is allowed to query the
CreatePuzSoln oracle by choosing a str at will. This is to ensure that the adver-
sary does not gain any advantage in solving a new puzzle even after seeing many
puzzles and their corresponding solutions.

Definition 5 (Puzzle Difficulty [7]). Let k be a security parameter. Fix a
difficulty parameter Q throughout the experiment. Let Puz be a client puzzle and
A be a probabilistic algorithm. The puzzle difficulty experiment ExpDiff

A,Puz,Q(k) is
defined as follows:

1. Run the set up algorithm Setup(1k) to obtain s and params.
2. Run the adversary Awith input params. The adversary has oracle access to

CreatePuz(·) and CheckPuz(·), which are answered as follows:
– CreatePuzSoln(str): Generate a puzzle puz by running the GenPuz(s,Q, str)

algorithm. Return puz to A. Find a solution soln using FindSoln algo-
rithm such that VerSoln(puz, soln) = true. Return (puz, soln) to A.

– Test(str∗): At any point during the game, the adversary Amay ask this
query once. For this query, the challenger generates a puzzle puz∗ by
running the GenPuz(s,Q, str) algorithm and returns puz∗ to A. Then A
may continue to ask CreatePuzSoln queries.

3. A outputs a potential solution soln∗.
4. Output 1 if VerSoln(puz∗, soln∗) = true and 0 otherwise.

We say that A wins the game if ExpDiff
A,Puz,Q(k) = 1 and loses otherwise. The

advantage of A is defined as:

AdvDiff
A,Puz,Q(k) = Pr

(
ExpDiff
A,Puz,Q(k) = 1

)
.

Let εk,Q(t) be a family of functions monotonically increasing in t. A puzzle Puz
is εk,Q(t)−difficult if

AdvDiff
A,Puz,Q(k) ≤ εk,Q(t) .

for all probabilistic algorithms A running in time at most t,

Remark 2. The bound εk,Q(t) in the difficulty definition is quite abstract. Let
Puz be a puzzle scheme such that each instance requires approximately Q steps
to solve. If Puz is εk,Q(t)-difficult, then a concrete function for εk,Q(t) might be
of the form εk,Q(t) ≈ t/Q+ negl(k).

B Security Analysis of RSAPuz

In this section, we show that RSAPuz satisfies the unforgeability and difficulty
properties introduced by Chen et al. [7].

B.1 Unforgeability of RSAPuz

Puzzle unforgeability follows in a straightforward manner from the pseudoran-
domness of the function H used to compute the authentication tags.

Theorem 3 (Unforgeability of RSAPuz). Let H be a pseudo-random func-
tion. Then RSAPuz is unforgeable.

Proof. We use a sequence of games to prove this theorem. LetA be a probabilistic
algorithm that runs in time t. Let Ei be the event that A wins in game Gi.

Game G0 Let G0 be the original unforgeability game. Then

Pr
(
ExpUF
A,RSAPuz(k) = 1

)
= Pr(E0) . (1)

Game G1 We replace the pseudo-random function Hρ which is used to compute
Z by a truly random function F in game G0 to obtain game G1. Since Hρ is a
pseudo-random function, this modification has a negligible effect on adversary
A. Hence,

|Pr(E0)− Pr(E1)| ≤ Advprf
B (k) ≤ negl(k) (2)

where B runs in timeO(t). The second inequality is due to the pseudo-randomness
of Hρ.

Since F is a truly random function, the probability that an adversary can
guess an output without having access to F is negligible:

Pr(E1) ≤ 1

2k
. (3)

Thus, the adversary’s success in forging a puzzle is negligible and is obtained
by combining equations (1)–(3). ut

B.2 Difficulty of RSAPuz

In this section, we show that our puzzle RSAPuz is difficult in the Chen et al.
model [7] as long as Rivest et al.’s time-lock puzzle TLPuz [18] is difficult. That
is, we show in the following theorem that the probability of solving RSAPuz is
bounded for all probabilistic algorithms A running in time at most t.

Theorem 4 (Difficulty of RSAPuz). Let k be a security parameter and let
Q be a difficulty parameter. Let GenRSA be a modulus generation algorithm. If
TLPuz with GenRSA is εk,Q(t)-difficult, then RSAPuz is ε′k,Q(t)-difficult for all
probabilistic algorithms A running in time at most t, where

ε′k,Q(t) = 2 · εk,Q (t+ (qC + 1) (2(`− 1)TMul) + c) .

Here, qC is the number of CreatePuzSoln queries and TMul is the time complexity
for computing a multiplication modulo n, and c is a constant.

Proof. We prove the theorem using a sequence of games. Let A be a probabilistic
algorithm with running time t. Let Ei be the event that A wins in game Gi. We
will use an adversary A that wins the puzzle difficulty experiment of RSAPuz to
construct an algorithm B that solves the TLPuz easily.

Game G0 Let G0 be the original difficulty game ExpDiff
A,RSAPuz(k).

For clarity, we write the full definition of this game:

1. The challenger obtains s← (ρ, d, φ(n), (αi, βi)
N
i=1) and params← (Q,n) by

running the Setup algorithm. The challenger keeps the secret s and gives the
parameters params to A.

2. For the CreatePuzSoln(NC) query issued by A, the challenger responds as
follows:

– the challenger first obtain a pair (x,X) by running the BPV pair genera-
tor BPVGen and then it computes Z and y as per the puzzle specification
(Figure 2).

– The challenger responds to A with (puz, soln)← ((NS , Z, x), y).

3. At some time during the game, A may issue the Test(N∗C) query to the
challenger. To respond to this, the challenger generates a puzzle puz∗ =
(N∗S , Z

∗, x∗) using GenPuz(s,Q,NC∗) and returns puz∗ to A. Then A may
continue to ask CreatePuzSoln(NC) queries.

4. A outputs a potential solution soln∗ = y∗.

5. The challenger outputs 1 if VerSoln(puz∗, soln∗) = true, otherwise outputs
0.

Then

Pr
(
ExpDiff
A,RSAPuz(k) = 1

)
= Pr(E0) . (4)

Game G1 Game G1 is very similar to the Game G0 except that we use the
TLPuz challenger to answer the CreatePuzSoln queries from A and we insert a
TLPuz challenge into the response to the Test query. In particular, the experiment
proceeds as follows:

1. Obtain params← (Q,n) from the TLPuz challenger.
2. Run A(params) with oracle access to CreatePuzSoln(·) and Test(·), which

are answered as follows:
– CreatePuzSoln(str): When A makes a CreatePuzSoln(str) query, our

challenger asks CreatePuzSoln query to the TLPuz challenger. Upon re-

ceiving a pair of the form (puz, soln) = (a, b) where b = a2
Q

mod n, our
challenger does the following:
• Sets x← a and y ← b. Note that the value a received each time from

TLPuz challenger is a random value in [1, n], where as in RSAPuz,
x is an output of the BPV generator and hence it is not chosen at
random from [1, n].

• Return (puz, soln) = (x, y) to A.
– Test(str∗): When A makes a Test(str∗) query. Then our challenger sim-

ply passes the same query as its Test query to the TLPuz challenger. In
return, our challenger receives its challenge puzzle puz∗ = a∗, where a∗

is a random integer in [1, n]. Then our challenger simply passes it to A.
That is, the target puzzle for A is puz∗ = a∗.

3. A may continue its CreatePuzSoln queries and the challenger answers them
as above.

4. When A outputs a potential solution soln∗, the challenger outputs the same
soln∗.

If A wins game G1, then the challenger wins the puzzle difficulty experiment
of TLPuz. Hence,

Pr(E2) ≤ AdvDiff
B,TLPuz,Q(k) ≤ εk,Q(t) . (5)

where B is our challenger which runs in time t(B) = t(A)+(qC+1) (2(`− 1)TMul)+
N ·TExp where qC is the number of CreatePuzSoln queries asked by A in G0, TMul

is the time complexity for computing a multiplication modulo n, and TExp is the
time complexity for computing an exponentiation modulo n.

In G0, a puzzle is of the form (NS , Z, x) where x is an output from the BPV
generator BPVGen whereas in G1 it is uniformly random and is output by the
TLPuz challenger.

Hence by Theorem 1, we get

|Pr(E0)− Pr(E1)| ≤ 2−
1
2 (log (N

`)+1) ≤ εk,Q(t) , (6)

where the second inequality follows from appropriate choices of N and `.

Final result Combining equations (4) through (6) yields the desired result. ut

	Efficient Modular Exponentiation-based Puzzles for Denial-of-Service Protection

