
Post-Quantum TLS Without Handshake Signatures
Peter Schwabe

Max Planck Institute for Security and

Privacy & Radboud University

peter@cryptojedi.org

Douglas Stebila

University of Waterloo

dstebila@uwaterloo.ca

Thom Wiggers

Radboud University

thom@thomwiggers.nl

ABSTRACT
We present KEMTLS, an alternative to the TLS 1.3 handshake that
uses key-encapsulation mechanisms (KEMs) instead of signatures
for server authentication. Among existing post-quantum candidates,
signature schemes generally have larger public key/signature sizes
compared to the public key/ciphertext sizes of KEMs: by using an
IND-CCA-secure KEM for server authentication in post-quantum
TLS, we obtain multiple benefits. A size-optimized post-quantum
instantiation of KEMTLS requires less than half the bandwidth of a
size-optimized post-quantum instantiation of TLS 1.3. In a speed-
optimized instantiation, KEMTLS reduces the amount of server CPU
cycles by almost 90% compared to TLS 1.3, while at the same time
reducing communication size, reducing the time until the client can
start sending encrypted application data, and eliminating code for
signatures from the server’s trusted code base.

KEYWORDS
Post-quantum cryptography; key-encapsulation mechanisms; Trans-
port Layer Security; NIST PQC
ACM Reference Format:
Peter Schwabe, Douglas Stebila, and Thom Wiggers. 2020. Post-Quantum
TLS Without Handshake Signatures. In 2020 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’20), November 9–13, 2020,
Virtual Event, USA. ACM, New York, NY, USA, 20 pages. https://doi.org/10.
1145/3372297.3423350

1 INTRODUCTION
The Transport Layer Security (TLS) protocol is possibly one of the
most-used secure-channel protocols. It provides not only a secure
way to transfer web pages [91], but is also to secure communications
to mail servers [51, 83] or to set up VPN connections [85]. The most
recent iteration is TLS 1.3, standardized in August 2018 [92]. The
TLS 1.3 handshake uses ephemeral (elliptic-curve) Diffie–Hellman
(DH) key exchange to establish forward-secret session keys. Authen-
tication of both server and (optionally) client is provided by either
RSA or elliptic-curve signatures. Public keys for the signatures are
embedded in certificates and transmitted during the handshake. Fig-
ure 1 gives a high-level overview of the TLS 1.3 protocol, focusing
on the signed-Diffie–Hellman aspect of the handshake.
Preparing for post-quantum TLS. There have been many exper-
iments and much research in the past five years on moving the TLS

CCS ’20, November 9–13, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7089-9/20/11.
https://doi.org/10.1145/3372297.3423350

Client Server

static (sig): pk𝑆 , sk𝑆
TCP SYN

TCP SYN-ACK

𝑥 ←$ Z𝑞
𝑔𝑥

𝑦←$ Z𝑞

ss← 𝑔𝑥𝑦

𝐾,𝐾 ′, 𝐾 ′′, 𝐾 ′′′ ← KDF(ss)

𝑔𝑦,AEAD𝐾 (cert[pk𝑆]∥Sig(sk𝑆 , transcript)∥key confirmation)

ss← 𝑔𝑦𝑥

𝐾,𝐾 ′, 𝐾 ′′, 𝐾 ′′′ ← KDF(ss)

AEAD𝐾 ′ (application data)

AEAD𝐾 ′′ (key confirmation)

AEAD𝐾 ′′′ (application data)

Figure 1: High-level overview of TLS 1.3, using signatures
for server authentication.

ecosystem to post-quantum cryptography. Most of the work has

focused on adding post-quantum key exchange to TLS, usually in

the context of so-called “hybrid” key exchange that uses both a

post-quantum algorithm and a traditional (usually elliptic curve)

algorithm, beginning with an experimental demonstration in 2015

of ring-LWE-based key exchange in TLS 1.2 [20].

Public experiments by industry started in 2016 with the CECPQ1

experiment by Google [75], combining X25519 ECDH [8] with

NewHope lattice-based key exchange [2] in the TLS 1.2 handshake.

A CECPQ2 followup experiment with TLS 1.3 was announced in late

2018 [74, 76] and is currently being run by Google using a combina-

tion of X25519 and the lattice-based scheme NTRU-HRSS [53, 54],

and by Cloudflare using X25519/NTRU-HRSS and X25519 together

with the supersingular-isogeny scheme SIKE [60]. First results from

this experiment are presented in [73]. In late 2019, Amazon an-

nounced that the AWS Key Management Service (AWS KMS) now

supports two ECDH-post-quantum hybrid modes; one also using

SIKE, the other one using the code-based scheme BIKE [3]. Our

focus is on public-key authenticated TLS, rather than pre-shared

key (which uses symmetric algorithms for most operations, and

can readily have its ephemeral key exchange replaced with a post-

quantum KEM) or password-authenticated TLS (for which there

has been some exploration of post-quantum algorithms [46]).

Additionally, the Open Quantum Safe (OQS) initiative [104] pro-

vides prototype integrations of post-quantum and hybrid key ex-

change in TLS 1.2 and TLS 1.3 via modifications to the OpenSSL

library [84]. First results in terms of feasibility of migration and per-

formance using OQS were presented in [31]; more detailed bench-

marks are presented in [86]. Draft specifications for hybrid key

exchange in TLS 1.3 have already started to appear [64, 105, 107].

Session 5B: Secure Messaging and Key Exchange CCS '20, November 9–13, 2020, Virtual Event, USA

1461

This work is licensed under a Creative Commons Attribution International 4.0 License

mailto:peter@cryptojedi.org
mailto:dstebila@uwaterloo.ca
mailto:thom@thomwiggers.nl
https://doi.org/10.1145/3372297.3423350
https://doi.org/10.1145/3372297.3423350
https://doi.org/10.1145/3372297.3423350
https://creativecommons.org/licenses/by/4.0/

Most of the above efforts only target what is often called “tran-

sitional security”: they focus on quantum-resistant confidential-

ity using post-quantum key exchange, but not quantum-resistant

authentication. The OQS OpenSSL prototypes do support post-

quantum authentication in TLS 1.3, and there has been a small

amount of research on the efficiency of this approach [99]. While

post-quantum algorithms generally have larger public keys, ci-

phertexts, and signatures compared to pre-quantum elliptic curve

schemes, the gap is bigger for post-quantum signatures than post-

quantum key encapsulation mechanisms (KEMs); see for example

Table 1 or [80].

Authenticated key exchange without signatures. There is a

long history of protocols for authenticated key exchange without

signatures. Key transport uses public key encryption: authentication
is demonstrated by successfully decrypting a challenge value. Exam-

ples of key transport include the SKEME protocol by Krawczyk [65]

and RSA key-transport ciphersuites in all versions of SSL and TLS

up to TLS version 1.2 (but RSA key transport did not provide for-

ward secrecy). Bellare, Canetti, and Rogaway [5] gave a protocol

that obtained authentication from Diffie–Hellman key exchange:

DH keys are used as long-term credentials for authentication, and

the resulting shared secret is mixed into the session key calculation

to derive a key that is implicitly authenticated, meaning that no one

but the intended parties could compute it. Some of these protocols

go on to obtain explicit authentication via some form of key con-

firmation. Many DH-based AKE protocols have been developed in

the literature. Some are currently used in real-world protocols such

as Signal [89], the Noise framework [88], and WireGuard [36].

There are a few constructions that use generic KEMs for AKE,

rather than static DH [21, 43]. A slightly modified version of the [43]

KEM AKE has recently been used to upgrade the WireGuard hand-

shake to post-quantum security [56]. One might think that the same

approach can be used for KEM-based TLS, but there are two major

differences between the WireGuard handshake and a TLS hand-

shake. First, the WireGuard handshake is mutually authenticated,

while the TLS handshake typically features server-only authenti-

cation. Second, and more importantly, the WireGuard handshake

assumes that long-term keys are known to the communicating par-

ties in advance, while the distribution of the server’s long-term

certified key is part of the handshake in TLS, leading to different

constraints on the order of messages and number of round trips.

The OPTLS proposal by Krawczyk and Wee [71] also aims at a

signature-free alternative for the common TLS handshake, with

authentication via long-term DH keys. OPTLS was at the heart

of early drafts of TLS 1.3, but was dropped in favour of signed-

Diffie–Hellman. As pointed out in [72], OPTLS makes use of DH

as a non-interactive key exchange (NIKE). First the client sends

their ephemeral DH public key, which the server combines with its

own long-term secret key to obtain a shared key; the server’s reply

thus implicitly authenticates the server to the client. Note however

that the client speaks first, without knowing the server’s public

key: a straight-forward adaptation of OPTLS to a post-quantum

setting would thus require a post-quantum NIKE. Unfortunately,

the only somewhat efficient construction for a post-quantum NIKE

is CSIDH [27], which is rather slow and whose concrete security

is the subject of intense debate [9, 10, 12, 18, 87]. The obvious

Client Server

static (KEMs): pk𝑆 , sk𝑆
TCP SYN

TCP SYN-ACK

(pk𝑒 , sk𝑒)← KEMe.Keygen() pk𝑒

(ss𝑒 , ct𝑒) ← KEMe.Encapsulate(pk𝑒)
𝐾1, 𝐾

′
1
← KDF(ss𝑒)

ct𝑒 ,AEAD𝐾1
(cert[pk𝑆])

ss𝑒 ← KEMe.Decapsulate(ct𝑒 , sk𝑒)
𝐾1, 𝐾

′
1
← KDF(ss𝑒)

(ss𝑆 , ct𝑆) ← KEMs.Encapsulate pk𝑆)
AEAD𝐾 ′

1

(ct𝑆)

ss𝑆 ← KEMs.Decapsulate(ct𝑆 , sk𝑆)
𝐾2, 𝐾

′
2
, 𝐾 ′′

2
, 𝐾 ′′′

2
← KDF(ss𝑒 ∥ss𝑆)

AEAD𝐾2
(key confirmation),AEAD𝐾 ′

2

(application data)

AEAD𝐾 ′′
2

(key confirmation)

AEAD𝐾 ′′′
2

(application data)

Figure 2: High-level overview of KEMTLS, using KEMs for
server authentication.

workaround when using only KEMs is to increase the number of

round trips, but this comes at a steep performance cost.

Our contributions. Our goal is to achieve a TLS handshake that

provides full post-quantum security—including confidentiality and

authentication—optimizing for number of round trips, communica-

tion bandwidth, and computational costs. Our main technique is to

rely on KEMs for authentication, rather than signatures.

We present an alternative TLS handshake, which we call KEM-
TLS, that uses key-encapsulation mechanisms as primary asym-

metric building blocks, for both forward-secure ephemeral key

exchange and authentication. (We unavoidably still rely on sig-

natures by certificate authorities to authenticate long-term KEM

keys.) A high level overview of KEMTLS is given in Fig. 2, and the

detailed protocol appears in Fig. 4. We focus on the most common

use case for web browsing, namely key agreement with server-only

authentication, but our techniques can be extended to client au-

thentication as shown in Appendix C. Note that the scenario we are

considering in this paper is orthogonal to resumption mechanisms

such as 0-RTT introduced by TLS 1.3.

With KEMTLS, we are able to retain the same number of round

trips until the client can start sending encrypted application data

as in TLS 1.3 while reducing the communication bandwidth. Com-

pared to TLS 1.3, application data transmitted during the handshake

is implicitly, rather than explicitly authenticated, and has slightly

weaker downgrade resilience and forward secrecy than when sig-

natures are used; but full downgrade resilience and forward secrecy

is achieved once the KEMTLS handshake completes; see Section 4

for details. Although our approach can be applied with any se-

cure KEM, we consider four example scenarios in the paper: (1)

optimizing communication size assuming one intermediate CA’s

certificate is included in transmission, (2) optimizing communica-

tion size assuming intermediate CA certificates can be cached [97]

and thus are excluded from transmission, (3) handshakes relying on

the module learning with errors (MLWE) / module short-integer-

solutions (MSIS) assumptions, and (4) handshakes relying on the

Session 5B: Secure Messaging and Key Exchange CCS '20, November 9–13, 2020, Virtual Event, USA

1462

0 2 4 6 8 10

0

50

100

150

200

250

RSA-2048
+ X25519

min incl. int. CA cert.

min excl.
int. CA
cert.

assumption: MLWE

assumption: NTRU

1
R
T
T

2
R
T
T

3
R
T
T

ERRR

SFXG

SFGG

KDDD KDDD

NFFF NFFF

SSXGSSGG

KKDD KKDD

NNFF NNFF

Size of public key crypto objects transmitted (KB)

T
i
m
e
u
n
t
i
l
c
l
i
e
n
t
r
e
c
e
i
v
e
d

e
n
c
r
y
p
t
e
d
a
p
p
l
i
c
a
t
i
o
n
d
a
t
a
(
m
s
)

signed KEX

incl. int. CA cert.

KEMTLS
incl. int. CA cert.

signed KEX

excl. int. CA cert.

KEMTLS
excl. int. CA cert.

Figure 3: Handshake size versus handshake establishment
time, for signed KEX and KEMTLS ciphersuites, including
and excluding transmission/processing of one intermediate
CA certificate. Latency 31.1ms, bandwidth 1000Mbps, 0% packet

loss. Label syntax: ABCD: A = ephemeral key exchange, B = leaf

certificate, C = intermediate CA certificate, D = root certificate. La-

bel values: Dilithium, ECDH X25519, Falcon, GeMSS, Kyber, NTRU,

RSA-2048, SIKE, XMSS
MT

s
; all level-1 schemes.

NTRU assumption. Note that the public key and certificate of the

root CA is not transmitted during the handshake as it is assumed

to be part of the client’s local trust store; but a signature by the

root CA would be transmitted as part of the intermediate CA’s

certificate, if that certificate is not also cached as in scenario (2).

In all 4 scenarios, KEMTLS is able to reduce communication sizes

compared to server authentication using post-quantum signatures.

For example, considering all level-1 schemes among the round-

3 finalists and alternate candidates of the NIST PQC project, the

minimum size of public-key-cryptography objects transmitted in a

fully post-quantum signed-KEM TLS 1.3 handshake that includes

transmission of an intermediate CA certificate would be 3035 bytes

(using SIKE for key exchange, Falcon for server authentication, a

variant of XMSS for the intermediate CA, and GeMSS for the root

CA), whereas with KEMTLS we can reduce that by 39% to 1853

bytes (using SIKE for key exchange and server authentication, a

variant of XMSS for the intermediate CA, and GeMSS for the root

CA); compare with 1376 bytes for RSA-signed elliptic-curve DH in

TLS 1.3. Fig. 3 shows the impact of the KEMTLS protocol design

on communication sizes for all the scenarios we consider; details

appear in Table 1 in Section 6.

To assess computational costs, we implemented KEMTLS by

modifying the Rustls library [15], using optimized C/assembly im-

plementations of the relevant post-quantum schemes. We measured

performance of this implementation in a range of network scenar-

ios following the methodology of [86], varying latency and band-

width. We found that KEMTLS results in better client and server

performance for scenarios involving the MLWE/MSIS and NTRU

assumptions. Our first two scenarios aim to absolutely minimize

communication bandwidth by replacing a fast signature scheme

(Falcon) with a smaller but slower KEM (SIKE), which, admittedly,

substantially slows down connection establishment, but may still

be relevant when communication bandwidth is of utmost concern.

See Fig. 3 for an overview and Section 6 for details.

We show that our KEMTLS approach indeed results in a secure

protocol, adapting the reductionist security analysis of Dowling,

Fischlin, Günther, and Stebila [37, 38] for signed-DH in TLS 1.3.

The proof is in the standard model, and authentication relies on the

IND-CCA security of the long-term KEM.

Software and data. For the experiments in this paper, we used

and modified open-source cryptographic software and TLS libraries.

In addition, we wrote new software to facilitate our experiments

and to create certificates. All software and data is available at https:

//thomwiggers.nl/publication/kem-tls/ and https://cryptojedi.org/

crypto/#kemtls. All software we modified is under permissive open-

source licenses; we place our code into the public domain (CC0).

Discussion. There are a few subtle differences in the properties

offered by KEMTLS compared to TLS 1.3. TLS 1.3 allows the server

to send encrypted and authentication application data in its first

response message, whereas KEMTLS does not. However, in most

uses of TLS 1.3, including web browsing, this feature is not used,

and the first application data is sent by the client in the second

client-to-server TLS message flow, which KEMTLS preserves.

KEMTLS provides implicit server-to-client authentication at the

time the client sends its first application data; explicit server-to-

client authentication comes one round trip later when a key confir-

mation message is received in the server’s response. We still retain

confidentiality: no one other than the intended server will be able

to read data sent by the client. One consequence is that the choice

of algorithms used is not authenticated by the time client sends

its first application data. The client cannot be tricked into using

algorithms that it itself does not trust, but an adversary might be

able to trick the client into using one that the server would have

rejected. By the time the handshake fully completes, however, the

client is assured that the algorithms used are indeed the ones both

parties preferred. We discuss the subtleties of the forward secrecy

and downgrade resilience properties of KEMTLS at different stages

more in Section 4.

ComparisonwithOPTLS.Our proposal for a signature-free hand-
shake protocol in TLS shares a lot of similarities with the OPTLS

protocol [71]. OPTLS was at the heart of early designs for TLS 1.3,

but was dropped in favour of signed-DH for the final standard.

Starting in 2018, there has been an attempt to revive OPTLS in

TLS 1.3 [94, 95], but so far we do not see that these drafts have

gained much traction. (The only implementation of OPTLS that we

are aware of is described in the Master’s thesis by Kuhnen [72].)

If a signature-free approach for the TLS handshake has not been

very successful in the past, why revisit it now? We see two reasons

why OPTLS has not gained much traction and both change with

the eventual move to post-quantum cryptography in TLS.

To tap the full potential of OPTLS, servers would need to obtain

certificates containing DH public keys instead of signature keys;

while this is in theory not a problem, it requires certificate authori-

ties to adapt their software and needs other changes to the public-

key infrastructure, which would have been obstacle to TLS 1.3’s

Session 5B: Secure Messaging and Key Exchange CCS '20, November 9–13, 2020, Virtual Event, USA

1463

https://thomwiggers.nl/publication/kem-tls/
https://thomwiggers.nl/publication/kem-tls/
https://cryptojedi.org/crypto/#kemtls
https://cryptojedi.org/crypto/#kemtls

goals of widespread deployment and fast adoption. However, the

move to post-quantum authentication will require rolling out a new

generation of certificates regardless of whether signatures or KEMs

are used for authentication.

Moreover, when using pre-quantum primitives based on elliptic

curves, the advantages of OPTLS compared to the traditional TLS 1.3

handshake are limited. The performance differences between ECDH

operations and ECDSA or EdDSA signing and verification are not

very large, and sizes of signatures and signature public keys are

small. A TLS implementation with secure and optimized elliptic-

curve arithmetic implemented for ECDH already has most critical

code needed to implement ECDSA or EdDSA signatures.

For current post-quantum KEMs and signature schemes, this

picture changes. It is possible to choose KEMs that offer consider-

ably smaller sizes and much better speed than any of the signature

schemes. Also, post-quantum signatures and KEMs no longer share

large parts of the code base; even though lattice assumptions can

be used to construct both KEMs and signatures, such schemes need

different parameters and thus different optimized routines.

Thus, in the post-quantum setting, the signature-free approach

to the TLS handshake offers major advantages. KEMTLS simultane-

ously reduces the amount of data transmitted during a handshake,

reduces the amount of CPU cycles spent on asymmetric crypto, re-

duces the total handshake time until the client can send application

data, and reduces the trusted code base.

2 PRELIMINARIES
Notation. Let N denote the set of natural numbers. For a set 𝑋 , the

notation 𝑥 ←$ 𝑋 denotes sampling an element uniformly at random

from the set 𝑋 and storing it in 𝑥 . IfA is a deterministic algorithm,

then 𝑦 ← A(𝑥) denotes running A with input 𝑥 and storing the

output in 𝑦. If A is a probabilistic algorithm, then 𝑦←$A(𝑥) de-

notes running A with input 𝑥 and uniformly random coins, and

storing the output in 𝑦. The notation ⟦𝑥 = 𝑦⟧ resolves to 1 if 𝑥 = 𝑦,

and 0 otherwise. The TLS protocol has named messages, such as

ClientHello, which we abbreviate like CH, as in Fig. 4.

Symmetric primitives. We rely on standard definitions of sym-

metric primitives such as hash functions with collision resistance,

pseudorandom functions, and message authentication codes with

existential unforgeability under chosen message attacks, the defini-

tions of which appear in Appendix A. We do note here the syntax of

HKDF [69], which is comprised of two components. HKDF.Extract
is a randomness extractor with two inputs: a salt and some input
keying material; in the TLS 1.3 key schedule, the salt argument

is used for the current secret state, and the input keying material

argument is used for new secret shared secrets being incorporated.

HKDF.Expand is a variable-length pseudorandom function with

(in this context) four inputs: a secret key, a label, a context string

consisting of a hash of a transcript of messages, and the desired

output length (which we omit in our presentation).

2.1 KEMs
Definition 2.1 (Key Encapsulation Mechanism (KEM)). A key en-

capsulation mechanism KEM is an asymmetric cryptographic prim-

itive that allows two parties 𝐴 and 𝐵 to establish a shared secret

key ss in a key space K . It consists of the following operations:

• Key generation: KEM.Keygen() probabilistically generates

a public and private keypair (pk, sk);
• Encapsulation:KEM.Encapsulate(pk) probabilistically gen-
erates a shared secret and ciphertext (encapsulation) (ss, ct)
against a given public key;

• Decapsulation: KEM.Decapsulate(ct, sk) decapsulates the
shared secret ss′ which, in a 𝛿-correct scheme, is equal to ss
with probability at least 1 − 𝛿 .

KEM security notions. The standard security definitions for a

KEM require that the shared secret be indistinguishable from ran-

dom (IND), given just the public key (chosen plaintext attack (CPA))

or additionally given access to a decapsulation oracle (chosen cipher-

text attack (CCA)). We make use of a restricted form of IND-CCA
security where the adversary can make only a single query to its

decapsulation oracle; we denote this IND-1CCA. The security ex-

periments for these security properties are given in Appendix A.

2.2 Authenticated key exchange from KEMs
As sketched in the introduction, authenticated key exchange using

KEMs for authentication is not new, with several examples of mu-

tually authenticated [19, 21, 43] and unilaterally authenticated [19]

protocols. The typical pattern among these, restricted to the case

of unilaterally authenticated key exchange, is as follows (c.f. [19,

Fig. 2]). The server has a static KEM public key, which the client

is assumed to (somehow) have a copy of in advance. In the first

flight of the protocol, the client sends a ciphertext encapsulated to

this static key, along with the client’s own ephemeral KEM public

key; the server responds with an encapsulation against the client’s

ephemeral KEM public key. The session key is the hash of the

ephemeral-static and ephemeral-ephemeral shared secrets.

This is a problem for TLS: typically, a client does not know the

server’s static key in advance, but learns it when it is transmitted

(inside a certificate) during the TLS handshake. One obvious solu-

tion to address this issue is for the client to first request the key

from the server and then proceed through the typical protocol flow.

However, this increases the number of round trips, and thus comes

at a steep performance cost.

The other trivial approach is to simply assume a change in the

Internet’s key distribution and caching architecture that distributes

the servers’ static key to the client before the handshake. For ex-

ample, in embedded applications of TLS, a client may only ever

communicate with very few different servers that are known in

advance; in that case, the client can just deploy with the server

static keys pre-installed. Another option would be to distribute cer-

tificates through DNS as described in [61]. Neither is a satisfactory

general solution, as the former limits the number of servers a client

can contact (since certificates must be pre-installed), and the latter

requires changes to the DNS infrastructure and moreover precludes

connections to servers identified solely by IP address.

3 THE KEMTLS PROTOCOL
KEMTLS achieves unilaterally authenticated key exchange using

solely KEMs for both key establishment and authentication, without

requiring extra round trips and without requiring caching or exter-

nal pre-distribution of server public keys: the client is able to send

Session 5B: Secure Messaging and Key Exchange CCS '20, November 9–13, 2020, Virtual Event, USA

1464

Client Server
TCP SYN

TCP SYN-ACK

(pk𝑒 , sk𝑒)←KEMe.Keygen()
ClientHello: pk𝑒 , 𝑟𝑐 ←$ {0, 1}256, supported algs.

ES←HKDF.Extract(0, 0)
dES←HKDF.Extract(ES, "derived", ∅)

(ss𝑒 , ct𝑒)←KEMe.Encapsulate(pk𝑒)

ServerHello: ct𝑒 , 𝑟𝑠 ←$ {0, 1}256, selected algs.

ss𝑒←KEMe.Decapsulate(ct𝑒 , sk𝑒)

HS←HKDF.Extract(dES, ss𝑒)
accept CHTS←HKDF.Expand(HS, "c hs traffic", CH..SH)

stage 1

accept SHTS←HKDF.Expand(HS, "s hs traffic", CH..SH)
stage 2

dHS←HKDF.Expand(HS, "derived", ∅)
{EncryptedExtensions}𝑠𝑡𝑎𝑔𝑒2

{ServerCertificate}𝑠𝑡𝑎𝑔𝑒2 : cert[pk𝑆], int. CA cert.

(ss𝑆 , ct𝑆)←KEMs.Encapsulate(pk𝑆)
{ClientKemCiphertext}𝑠𝑡𝑎𝑔𝑒1 : ct𝑆

ss𝑆←KEMs.Decapsulate(ct𝑆 , sk𝑆)

AHS←HKDF.Extract(dHS, ss𝑆)
accept CAHTS←HKDF.Expand(AHS, "c ahs traffic", CH..CKC)

stage 3

accept SAHTS←HKDF.Expand(AHS, "s ahs traffic", CH..CKC)
stage 4

dAHS←HKDF.Expand(AHS, "derived", ∅)

MS←HKDF.Extract(dAHS, 0)
fk𝑐←HKDF.Expand(MS, "c finished", ∅)
fk𝑠←HKDF.Expand(MS, "s finished", ∅)

{ClientFinished}𝑠𝑡𝑎𝑔𝑒3 : CF←HMAC(fk𝑐 , CH..CKC)

abort if CF ̸= HMAC(fk𝑐 , CH..CKC)

accept CATS←HKDF.Expand(MS, "c ap traffic", CH..CF)
stage 5

record layer, AEAD-encrypted with key derived from CATS

{ServerFinished}𝑠𝑡𝑎𝑔𝑒4 : SF←HMAC(fk𝑠 , CH..CF)

abort if SF ̸= HMAC(fk𝑠 , CH..CF)

accept SATS←HKDF.Expand(MS, "s ap traffic", CH..SF)
stage 6

record layer, AEAD-encrypted with key derived from SATS

P
h
a
s
e
1
:
e
p
h
e
m
e
r
a
l
k
e
y
e
x
c
h
a
n
g
e

P
h
a
s
e
2
:
I
m
p
l
i
c
i
t
l
y
a
u
t
h
e
n
t
i
c
a
t
e
d
k
e
y
e
x
c
h
a
n
g
e

P
h
a
s
e
3
:
C
o
n
fi
r
m
a
t
i
o
n
/

e
x
p
l
i
c
i
t
a
u
t
h
e
n
t
i
c
a
t
i
o
n

Figure 4: The KEMTLS handshake

its first encrypted application data after just as many handshake

round trips as in TLS 1.3.

KEMTLS is to a large extent modelled after TLS 1.3. A high-level

overview of the handshake is shown in Fig. 2, and a detailed pro-

tocol flow is given in Fig. 4. Note that Fig. 4 omits various aspects

of the TLS 1.3 protocol that are not relevant to our presentation

and cryptographic analysis but which would still be essential if

KEMTLS was used in practice. KEMTLS is phrased in terms of two

KEMs: KEMe for ephemeral key exchange, and KEMs for implicit

authentication; one could instantiate KEMTLS using the same algo-

rithm for both KEMe and KEMs (as we do in all our instantiations),

or different algorithms for different efficiency trade-offs, such as

an algorithm with slow key generation but fast encapsulation for

the long-term KEM. Either or both could also be a “hybrid” KEM

combining post-quantum and traditional assumptions [14].

There are conceptually three phases to KEMTLS, each of which

establishes one or more “stage” keys.

Phase 1: Ephemeral key exchange using KEMs. After estab-
lishing the TCP connection,

1
the KEMTLS handshake begins with

1
Our exposition and experiments deal with the general scenario of KEMTLS running

the client sending one or more ephemeral KEM public keys pk𝑒
in its ClientHello message, as well as the list of public key au-

thentication, key exchange, and authenticated encryption meth-

ods it supports. The server responds in the ServerHello message

with an encapsulation ct𝑒 against pk𝑒 and the algorithms it se-

lected from the client’s proposal; note that if (none of) the pk𝑒 the
client sent was for the key-exchange method the server selected,

a special HelloRetryRequest message is sent, prompting a new

ClientHello message. Nonces 𝑟𝑐 and 𝑟𝑠 are also transmitted for

freshness. At this point, the client and server have an unauthenti-

cated shared secret ss𝑒 . KEMTLS follows the TLS 1.3 key schedule,

which applies a sequence of HKDF operations to the shared secret

ss𝑒 and the transcript to derive (a) the client and server handshake

traffic secrets CHTS and SHTS which are used to encrypt subse-

quent flows in the handshake, and (b) a “derived handshake secret”

dHS which is kept as the current secret state of the key schedule.
2

Phase 2: Implicitly authenticated key exchange usingKEMs.
In the same server-to-client flight as ServerHello, the server also
sends a certificate containing its long-term KEM public key pk𝑆 .
The client encapsulates against pk𝑆 and sends the resulting ci-

phertext in its ClientKemCiphertext message. This yields an im-

plicitly authenticated shared secret ss𝑆 . The key schedule’s secret

state dHS from phase 1 is combined with ss𝑆 using HKDF to give

an “authenticated handshake secret” AHS from which are derived

(c) the client and server authenticated handshake traffic secrets

CAHTS and SAHTS which are used to encrypt subsequent flows

in the handshake,
3
and (d) an updated secret state dAHS of the key

schedule. A master secret MS can now be derived from the key

schedule’s secret state dAHS. From the master secret, several more

keys are derived: (e) “finished keys” fk𝑐 and fk𝑠 which will be used

to authenticate the handshake and (f) client and server application

transport secrets CATS and SATS from which are derived applica-

tion encryption keys. The client now sends a confirmation message

ClientFinished to the server which uses a message authentica-

tion code with key fk𝑐 to authenticate the handshake transcript. In

the same flight of messages, the client is also able to start sending

application data encrypted under keys derived from CATS; this is

implicitly authenticated.

Phase 3: Confirmation / explicit authentication. The server

responds with its confirmation in the ServerFinished message,

authenticating the handshake transcript using MAC key fk𝑠 . In
the same flight, the server sends application data encrypted un-

der keys derived from SATS. Once the client receives and verifies

ServerFinished, the server is explicitly authenticated.

4 SECURITY ANALYSIS
AsKEMTLS is an adaptation of TLS 1.3, our security analysis follows
previous techniques for proving security of TLS 1.3. In particular, we

over TCP, analogously to TLS 1.3. As with TLS 1.3, the overhead from the TCP hand-

shake may be reduced by a variety of techniques as discussed in [28], such as using

TCP Fast Open [29] or QUIC with UDP [57].

2
The key schedule in Fig. 4 starts with a seemingly unnecessary calculation of ES and

dES; these values play a role in TLS 1.3 handshakes using pre-shared keys; we retain

them to keep the state machine of KEMTLS aligned with TLS 1.3 as much as possible.

3
CAHTS and SAHTS are implicitly authenticated: subsequent handshake traffic can

only be read by the intended peer server. This is particularly useful in the client-

authenticated version of KEMTLS in Appendix C when the client sends its certificate.

Session 5B: Secure Messaging and Key Exchange CCS '20, November 9–13, 2020, Virtual Event, USA

1465

base our approach on the reductionist security approach of Dowl-

ing, Fischlin, Günther, and Stebila [37, 38]. Briefly, that approach

adapts a traditional Bellare–Rogaway-style [6] authenticated-key-

exchange security model to accommodate multiple stages of session
keys established in each session, following the multi-stage AKE

security model of Fischlin and Günther [40]. The model used for

TLS 1.3 in [37, 38] supports a variety of modes and functionality,

such as mutual versus unilateral authentication, full handshake and

pre-shared keymodes, and other options.We are able to simplify the

model for this application, though we also add some other features,

such as explicit authentication and granular forward secrecy.

In this section, we give an informal description of the security

model, including the adversary interaction (queries) for the model;

the specific security properties desired (Match security, which en-

sures that session identifiers effectively match partnered sessions,

andMulti-Stage security, which models confidentiality and authen-

tication as described below); and a sketch of the proofs showing

that KEMTLS satisfies these properties. The full syntax and specifi-

cation of the security properties as well as the detailed proofs of

security for KEMTLS appear in Appendix B.

Security goal. The main security goal we aim for is that keys estab-

lished in every stage of KEMTLS should be indistinguishable from

a random key, in the face of an adversary who sees and controls

all communications, who can learn other stages’ keys, who can

compromise unrelated secrets (such as long-term keys of parties

not involved in the session in question), and who may, after-the-

fact, have learned long-term keys of parties involved in the session

(“forward secrecy”). This is the same security goal and threat model

for TLS 1.3 [37, 92]. We distinguish between implicit authentication

(where a key could only be known by the intended peer), which

follows from key indistinguishability and forward secrecy, and ex-

plicit authentication (which assures that the intended peer actually

participated). In this section we consider KEMTLS with unilateral

server-to-client authentication only; a sketch of KEMTLS with mu-

tual authentication is given in Appendix C.

4.1 Security model
In the followingwe describe informally the security model, focusing

on how it differs from the multi-stage AKE model used by Dowling

et al. [37, 38] to analyze signed-Diffie–Hellman in TLS 1.3. The

precise formulation of the model appears in Appendix B.

Model syntax. Each server has a long-term public key and corre-

sponding private key; we assume a public-key infrastructure for

certifying these public keys, and that the root certificates are pre-

distributed, but server certificates are not pre-distributed. Each

participant (client or server) can run multiple instances of the pro-

tocol, each of which is called a session. Note that a session is a

participant’s local instance of a protocol execution; two parties

communicating with each other each have their own sessions. Each

session may consist of multiple stages (for KEMTLS, there are 6
stages as marked in Fig. 4).

For each session, each participant maintains a collection of

session-specific information, including: the identity of the intended

communication partner; the role of the session owner (either initia-

tor or responder); the state of execution (whether it has accepted a

key at a certain stage, or is still running, or has rejected); as well

as protocol-specific state. For each stage within a session, each

participant maintains stage-specific information, including: the key
established at the stage (if any); a session identifier for that stage;
and a contributive identifier for that stage. Two stages at different
parties are considered to partnered if they have the same session

identifier. The session identifiers for KEMTLS are the label of the

key and the transcript up to that point (see Appendix B.3). For the

first stage, the contributive identifier is the ClientHello initially,
then updated to the ServerHello message; for all other stages, the

contributive identifier is the session identifier.

The model also records security properties for each stage key:

1) The level of forward secrecy obtained for each stage key. The

three levels of forward secrecy we meet are detailed in Section 4.2

below. The model allows for retroactive revision of forward secrecy:

the stage-𝑖 key may have weak forward secrecy at the time it is

established in stage 𝑖 , but may have full forward secrecy once a

later stage 𝑗 > 𝑖 has completed (i.e., after receiving an additional

confirmation message). The level of forward secrecy also implies

whether the key should be considered implicitly authenticated.
2) Whether the stage is explicitly authenticated: if a party accepts

a stage, is it assured that its partner was live and established an

analogous stage? Again our model allows for retroactive explicit
authentication: while a stage-𝑖 key may not have explicit authenti-

cation when established in stage 𝑖 , completion of a later stage 𝑗 > 𝑖

may imply that a partner to stage 𝑖 is now assured to exist.

3) Whether the key is intended for internal or external use.
TLS 1.3 and KEMTLS internally use some of the keys established

during the handshake to encrypt later parts of the handshake to

improve privacy, whereas other keys are “external outputs” of the

handshake to be used for authenticated encryption of application

data. Internally used keys must be treated more carefully in the

security experiment.

Our inclusion of forward secrecy and explicit authentication is

an extension to the multi-stage AKE model used for TLS 1.3 [37, 38].

Adversary interaction. The adversary is a probabilistic algorithm
which triggers parties to execute sessions and controls the commu-

nications between all parties, so it can intercept, inject, or drop any

message. As a result, the adversary facilitates all interactions, even

between honest parties.

The adversary interacts with honest parties via several queries.

The first two queries model the typical protocol functionality, which

is now under the control of the adversary:

• NewSession: Creates a new session at a partywith a specified

intended partner and role.

• Send: Delivers a message to a session at a party, which ex-

ecutes the protocol based on its current state, updates its

state, and returns any outgoing protocol message.

The next two queries model the adversary’s ability to compromise

parties’ secret information:

• Reveal: Gives the adversary the key established in a particu-

lar stage. This key, and the key at the partner session (if it

exists), is marked as revealed.

• Corrupt: Gives the adversary a party’s long-term secret key.

This party is marked as corrupted.

The Reveal andCorrupt queries maymake a stage unfresh, meaning

Session 5B: Secure Messaging and Key Exchange CCS '20, November 9–13, 2020, Virtual Event, USA

1466

the adversary has learned sufficiently much information that no

security can be expected of this key.

The final querymodels the challenge to the adversary of breaking

a key established in a stage:

• Test: For a session and stage chosen by the adversary, returns
either the real key for that stage, or a uniformly random key,

depending on a hidden bit𝑏 fixed throughout the experiment.

Some additional conditions apply to the handling of queries. For

keys marked as intended for internal use, the execution of the Send
query pauses at the moment the key is accepted, giving the adver-

sary the option to either Test that key or continue without testing.

This is required since internal keys may be used immediately for,

e.g., handshake encryption, and giving the adversary to Test the key
after it has already started being used to encrypt data would allow

the adversary to trivially win. For keys that are not considered

authenticated at the time of the Test query, the query is only per-

mitted if the session has an honest contributive partner, otherwise

the adversary could trivially win by active impersonation.

4.2 Security properties
A sequence of works [24, 25, 40] split AKE security into two distinct

properties: the traditional session-key indistinguishability property

dating back to Bellare and Rogaway [6], and a property called

Match-security, which models the soundness of the session identi-

fier, ensuring that the session identifier 𝜋.sid properly matches the

partnered 𝜋 ′.sid and the correctness property that partnered ses-

sions compute the same session key. For well-chosen session iden-

tifiers, proving the technical properties ofMatch-security typically

does not depend on any cryptographic assumptions, and instead

follows syntactically. This is indeed the case for both TLS 1.3 and

KEMTLS, although for KEMTLS we account for correctness-error

in KEMs: the small chance that some PQ KEMs have of both parties

not computing the same shared secret. Details are in Appendix B.4.

4.2.1 Multi-Stage security. The Multi-Stage model captures both

key indistinguishability and authentication properties, which we

describe below. Details of the experiment appear in Appendix B.5.

Key indistinguishability. Secrecy of the key established in each

stage is through indistinguishability from random following Bellare–

Rogaway [6]. This property is defined via an experiment with the

syntax and adversary interaction as specified above. The goal of the

adversary is to guess the hidden, uniformly random bit 𝑏 which was

used to answer Test queries: was the adversary given real or ran-

dom keys? As noted above, the experiment imposes constraints on

Reveal queries to prevent the adversary from revealing and testing

the same key of some stage in a session or its partner. Depending on

the intended forward secrecy goals of the stage key, some Corrupt
queries may also be prohibited as described below to prevent the

adversary from actively impersonating a party in an unauthenti-

cated session then testing that key. We measure the adversary’s

advantage in guessing 𝑏 better than just flipping a coin.

Forward secrecy and implicit authentication. Our multi-stage

security definition incorporates three notions of forward secrecy

[67, 68] for stage keys:

• Weak forward secrecy level 1 (wfs1): The stage key is indis-

tinguishable against adversaries who were passive in the

test stage (even if the adversary obtains the peer’s long-term

secret key at any point in time—before or after the stage key

was accepted). These keys have no authentication.

• Weak forward secrecy level 2 (wfs2): The stage key is indistin-
guishable against adversaries who were passive in the test

stage (wfs1) or if the adversary never corrupted the peer’s

long-term key. These keys are implicitly authenticated if the

adversary did not corrupt the peer’s long-term key before

the stage key was accepted.

• Forward secrecy (fs): The stage key is indistinguishable against
adversaries who were passive in the test stage (wfs1) or if the
adversary did not corrupt the peer’s long-term key before

the stage accepted. These keys are implicitly authenticated.

These correspond to forward-secrecy levels 1, 3, and 5 in the Noise

protocol framework [88].

Explicit authentication.We add an explicit authentication notion

to the multi-stage model, where the adversary also wins if it causes

a supposedly explicitly authenticated stage to accept without a

partner stage (called malicious acceptance).

Properties of KEMTLS. For KEMTLS, the properties of each stage

key in a client instance are as follows:

• Stages 1 and 2:wfs1 fromwhen they are accepted, retroactive

fs once stage 6 has accepted. No authentication at the time

of acceptance, retroactive explicit authentication once stage

6 has accepted. For internal use.

• Stages 3, 4, and 5:wfs2 from when they are accepted, retroac-

tive fs once stage 6 has accepted. Implicit authentication at

the time of acceptance, retroactive explicit authentication

once stage 6 has accepted. Stages 3 and 4 are for internal use;

stage 5 for external use.

• Stage 6: fs and explicit authentication from the time of ac-

ceptance; for external use.

All stage keys in a server instance of KEMTLS have wfs1 security
and are unauthenticated; they have the same internal/external key

use as the client.

The following theorem says that KEMTLS isMulti-Stage-secure
with respect to the forward secrecy, authentication, and inter-

nal/external key-use properties as specified above, assuming that

the hash functionH is collision-resistant,HKDF is a pseudorandom
function in either its “salt” or “input keying material” arguments,

HMAC is a secure MAC, KEMs is an IND-CCA-secure KEM, and

KEMe is an IND-1CCA-secure KEM (i.e., KEMe is secure if a single

decapsulation query is allowed).

Theorem 4.1. LetA be an algorithm, and let 𝑛𝑠 be the number of
sessions and 𝑛𝑢 be the number of parties. Then the advantage of A
in breaking the multi-stage security of KEMTLS is upper-bounded by

𝑛2𝑠

2
|nonce | + 𝜖

COLL
H + 6𝑛𝑠 ·

©­­­­­­«
𝑛𝑠

(
𝜖IND-1CCAKEMe

+ 𝜖PRF-secHKDF.Ext

+2 𝜖dual-PRF-secHKDF.Ext + 4 𝜖PRF-secHKDF.Exp

)
+2𝑛𝑢

(
𝜖IND-CCAKEMs

+ 2 𝜖dual-PRF-secHKDF.Ext

+3 𝜖PRF-secHKDF.Exp + 𝜖
EUF-CMA
HMAC

) ª®®®®®®¬
.

Above we use the shorthand notation 𝜖𝑋
𝑌

= Adv𝑋
𝑌,B𝑖 for reduc-

tions B𝑖 that are described in the proof. The proof of Theorem 4.1

Session 5B: Secure Messaging and Key Exchange CCS '20, November 9–13, 2020, Virtual Event, USA

1467

appears in Appendix B.5; here we provide a sketch. The proof pro-

ceeds by a sequence of games, and splits into several cases.

We start off with game hops that assume that there are no reused

nonces among the honest session and that there are no collisions

in any hash function calls, which will be useful in later parts of the

proof. The Multi-Stage security experiment is formulated to allow

the adversary to make multiple Test queries. In the next game hop,

we restrict the adversary to make a single Test query by guessing

a to-be-tested session using a hybrid argument [49]; this incurs a

tightness loss 6𝑛𝑠 related to the number of sessions and stages.

The proof then splits into three cases: case A where the (now

single) tested session has an honest contributive partner in the first

stage; case B where the tested does not have an honest contributive

partner in the first stage and the adversary never corrupts the peer’s

long-term key; and case C where the tested session does not have

an honest contributive partner in the first stage and the adversary

does not corrupt the peer’s long-term key before the tested stage

has accepted. These three cases effectively correspond to the three

forward-secrecy levels wfs1,wfs2, and fs.

Case A. Here we assume that there does exist an honest contribu-

tive partner to at least the first stage of the tested session. When the

tested session is a client session, this means that the adversary did

not interfere with the ephemeral key exchange in the ClientHello
and ServerHello messages, so the ephemeral shared secret is un-

known to the adversary assuming a secure KEMe.

However, when the tested session is a server session, we only

have the guarantee that the adversary faithfully delivered the

ClientHello to the server; the adversary could have sent its own

ServerHello message to the client. This is valid adversary be-

haviour, and such an adversary would be able to compute the hand-

shake encryption keys. In this case we need to correctly respond

to the adversary, but in our simulation we do not have the KEMe
secret key, thus we need to make a single query to a decapsula-

tion oracle. This is why we rely on IND-1CCA security, the single-

decapsulation-query version of IND-CCA, rather than IND-CPA as

might be expected for passive security.
4

All keys derived from this are thus also indistinguishable from

random, and the remainder of case A is a sequence of game hops

which, one-by-one, replace derived secrets and stage keys with

random values, under the PRF-security or dual-PRF-security [4]

of HKDF (dual-PRF-security arises since the TLS 1.3 and KEM-
TLS key schedules sometime use secrets in the “salt” argument of

HKDF.Extract, rather than the “input keying material argument”).

This yields the required wfs1 property for all stage keys.

Case B. Lacking an honest contributive partner in the first stage

means the adversary was actively impersonating the peer to the

tested session, and there is no partner at any stage of that session. As

KEMTLS only provides server-to-client authentication, the tested

session in case B is a client session. In case B we assume the server’s

long-term key is never compromised. This allows us to rely on the

security of encapsulations under the server’s long-term key.

Case B’s sequence of game hops is as follows. First, we guess

the identity of the server 𝑆 that the adversary will attempt to im-

personate to the client in the tested session. Then we replace with

4
This is analogous to the proofs of signed-Diffie–Hellman in TLS 1.2 [58, 70] and TLS

1.3 [37, 38] that use a single query to a PRF-ODH oracle.

a random value the shared secret ss𝑆 that the client encapsulated

against the intended server’s long-term static key pk𝑆 . If KEMs is

IND-CCA-secure, only the intended server should be able to de-

capsulate and recover ss𝑆 , and thus ss𝑆 , and any key derived from

it (following a sequence of game hops involving the security of

HKDF), is an implicitly authenticated key unknown to the adver-

sary. This yields the indistinguishability of the stage 3-6 keys under

the conditions of case B, and hence their required wfs2 properties.

Case C. Case C and case B differ only if the adversary does cor-

rupt the intended peer’s long-term key after the tested session

accepts in stage 6. Our reduction from IND-CCA security of KEMs
in case B runs into a problem: how to correctly answer the ad-

versary’s Corrupt query. Up until this bad query occurs, however,

our IND-CCA reduction (and indeed, every reduction in case B) is

fine, and all keys in the tested client session can be shown indistin-

guishable from random. This includes key fk𝑠 that the server uses
for the MAC authenticating the transcript in the ServerFinished
message. If the client accepts SF in case C — without a partner to

stage 6 — then the adversary has forged an HMAC tag.

Contrapositively, assuming all the cryptographic primitives are

secure, no stage accepts under the conditions of case C. This yields

explicit server-to-client authentication of stage 6 (and retroactive

authentication of all previous stages once stage 6 accepts, since

their session identifiers are substrings of the stage-6 sid). This also
yields forward secrecy (fs) of the stage-6 key at the client, and

retroactive fs of all stage keys at the client.

4.3 Discussion of security properties
Strength of the ephemeral KEM. The proof requires that the

ephemeral KEM be slightly stronger than passive IND-CPA security:

that it be secure against a single decapsulation query (IND-1CCA).
This is subtle and counterintuitive: one might expect that IND-CPA
would be enough for ephemeral key exchange (indeed, we missed

this in an earlier draft of this paper). However, in an AKE security

model that replaces the public key of the client and the ciphertext

of the server, but allows the adversary to send a different ciphertext

back to the client without invalidating the target session at the

server, this is unavoidable [58, 70]. An IND-CCA KEM certainly

suffices for the ephemeral KEM, but for most known PQ candidates

this incurs the cost of re-encryption using the Fujisaki–Okamoto

(FO) transform [44]. There are concrete attacks against several non-

FO-protected lattice- and isogeny-based KEMs using a few thousand

decapsulation queries [41, 45], but none with just a single query.

We leave as an open question to what extent non-FO-protected

post-quantum KEMs may be secure against a single decapsulation

query, but at this point IND-CCA is the safe choice.

Tightness. Theorem 4.1 is non-tight, due to hybrid and guessing

arguments. While it is certainly desirable to have tight results,

only a few authenticated-key-exchange protocols have tight proofs,

most of which with specialized designs. Most previous results on

TLS 1.3 [37, 38] are similarly non-tight, except for very recent work

[33] which reduces from multi-user security of the symmetric en-

cryption scheme, MAC, KDF, and signature scheme, and the strong

Diffie–Hellman assumption. As of this writing, none of the IND-

CCA NIST round-3 KEMs have tight proofs in a multi-user model,

although there is some work in that direction for Regev’s original

Session 5B: Secure Messaging and Key Exchange CCS '20, November 9–13, 2020, Virtual Event, USA

1468

scheme and a variant of Frodo [110]. One can view a non-tight re-

sult such as Theorem 4.1 as providing heuristic justification of the

soundness of the protocol design, and one can in principle choose

parameters for the cryptographic primitives that yield meaningful

advantage bounds based on the non-tight reductions.

Quantum adversaries. The proof of Theorem 4.1 proceeds in the

standard model (without random oracles), and does not rely on

techniques such as the forking lemma or rewinding, so techniques

like Song’s “lifting lemma” [103] could be applied to show that

KEMTLS is secure against quantum adversaries, provided that each

of the primitives used is also secure against quantum adversaries.

Negotiation and downgrade resilience. We do not explicitly

model algorithm negotiation inKEMTLS, but it merits consideration

given the likelihood that any deployment ofKEMTLSwould support
multiple algorithms within KEMTLS, and might also be running in

parallel with a TLS 1.3 implementation. We consider adversarial

downgrades among each of the following negotiated choices:

• Protocol: KEMTLS versus TLS 1.3.

• Ephemeral key exchange: which KEM within KEMTLS, or
which group if downgraded to DH/ECDH in TLS 1.3.

• Authenticated encryption and hash function.

• Public key authentication: which KEM within KEMTLS, or
which signature scheme if downgraded to TLS 1.3.

We consider three levels of downgrade resilience:

1) Full downgrade resilience: the adversary cannot cause a party

to use any algorithm other than the one that would be used between

the two honest parties if the adversary was passive. This is called

optimal negotiation by [39] and downgrade security by [11].

2) No downgrade to unsupported algorithms: the adversary can

cause parties to use a different algorithm than the optimal one that

would be used if the adversary was passive, but cannot cause a

party to use an algorithm that it disabled in its configuration. This

is called negotiation correctness by [11].

3) No downgrade resilience: the adversary can cause a party to

use any algorithm permitted in the standard (e.g., [1]).

We assume that none of the algorithms supported by the client

or server are broken at the time the session is established, and the

downgrade adversary’s goal is to force use of an algorithm that the

adversary hopes to have a better chance of breaking in the future

(e.g., ECDH instead of a PQ KEM; AES-128 instead of AES-256).

In KEMTLS, for client sessions, any algorithms used prior to the

acceptance of the stage-6 key (i.e., ephemeral KEM, authenticated

encryption of handshake and of first client-to-server application

flow) cannot be downgraded to an unsupported algorithm (barring

an implementation flaw), but can still be downgraded to a different

client-supported algorithm.
5
The explicit authentication that the

client receives for the stage-6 key includes confirmation in the

ServerFinished message that the client and server have the same

transcript including the same negotiation messages, which implies

full downgrade resilience once the stage-6 key is accepted, assuming

that the hash, MAC, KEM, and KDF used are not broken by the time

5
While KEMTLS’s implicit authentication in stage 3/4 does not preclude downgrades,

TLS 1.3’s signature-based explicit authentication at stage 3 does provide transcript

authentication. Hence, when KEMTLS and TLS 1.3 are simultaneously supported by a

client, an attacker cannot downgrade 1-RTT application data from KEMTLS to TLS 1.3.

of acceptance.
6
Since there is no client-to-server authentication

in the base KEMTLS protocol, servers obtain “no downgrade to

unsupported algorithms” for all their stages.

Anonymity. Neither TLS 1.3 nor KEMTLS offer server anonymity

against passive adversaries, due to the ServerNameIndicator ex-
tension in the ClientHellomessage. The TLS working group is in-

vestigating techniques such as Encrypted ClientHello [93] which
rely on out-of-band distribution of server keying material. If the

client gets the server’s long-term KEM public key out-of-band as

in [93], KEMTLS could be adapted to have wfs1, implicit authenti-

cation, and no-downgrade-to-unsupported-algorithms on the first

client-to-server KEMTLS flow; and fs, explicit authentication, and
full downgrade-resilience on the 2nd client-to-server flow.

Deniability. Krawczyk pointed out [65, Sec. 2.3.2] that using sig-

natures for explicit authentication in key-agreement protocols adds

an unnecessary and undesirable property: non-repudiation. A pro-

tocol has offline deniability [32] if a judge, when given a protocol

transcript and all of the keys involved, cannot tell whether the tran-

script is genuine or forged. The KEM-authenticated handshake of

KEMTLS, unlike the signature-authenticated handshake of TLS 1.3,

has offline deniability: given just the long-term public keys of the

parties, it is possible to forge KEMTLS transcripts indistinguishable
from real ones. Online deniability [35] is harder to achieve: the

judge may coerce a party to send certain malicious messages to the

target. KEMTLS does not achieve online deniability.

5 INSTANTIATION AND IMPLEMENTATION
5.1 Choice of primitives
To compare the performance of KEMTLS and TLS 1.3 we selected

8 post-quantum suites (4 using TLS 1.3 with signatures, 4 using

KEMTLS with only KEMs) that exemplify the following 4 scenarios:

(1) optimizing communication size assuming one intermediate

CA certificate is included in transmission,

(2) optimizing communication size assuming intermediate CA

certificates can be cached, thus excluded from transmission,

(3) handshakes relying on module learning with errors (MLWE)

/ module short-integer-solutions (MSIS), and

(4) handshakes relying on the NTRU assumption.

We decided on two scenarios with structured lattices (NTRU,MLWE

/ MSIS) since these give very good overall performance in terms of

size and speed [73, 86]. The two lattice-based signature schemes

Falcon and Dilithium were identified as most efficient for the use

in TLS 1.3 in [99]. We contrast these against pre-quantum TLS 1.3

using X25519 [8] key exchange with RSA-2048 [96] signatures.

For all primitives we considered the parameter set at NIST se-

curity level 1, i.e., targeting security equivalent to AES-128 [42,

Sec. 4.A.5]. All primitives we chose are NIST PQC round-3 finalists

or alternate candidates, except for an instantiation of the stateful

signature algorithm XMSS at NIST level 1 for signatures generated

by CAs. XMSS is already defined in an RFC [55] and is being consid-

ered by NIST for a fast track to standardization [30]. The XMSS RFC

only describes parameters matching NIST level 5 and higher, but

the adaptation to a level-1 parameter set is rather straight-forward.

6
Signature-based authentication in TLS 1.3 means that TLS 1.3’s downgrade-resilience

relies only on the signature and hash being unbroken by the time of acceptance.

Session 5B: Secure Messaging and Key Exchange CCS '20, November 9–13, 2020, Virtual Event, USA

1469

Table 1: Instantiations of TLS 1.3 and KEMTLS handshakes with sizes in bytes of transmitted public-key cryptography objects.

Excluding intermediate CA certificate Including intermediate CA certificate Sum TCP pay-
loads of TLS HS
(incl. int. CA crt.)

Abbrv. KEX
(pk+ct)

HS auth
(ct/sig)

Leaf crt.
subject (pk)

Leaf crt.
(signature)

Sum excl.
int. CA cert.

Int. CA crt.
subject (pk)

Int. CA crt.
(signature)

Sum incl.
int. CA crt.

Root CA
(pk)

T
L
S
1
.3
(
S
i
g
n
e
d
K
E
X
)

TLS 1.3 ERRR ECDH RSA-2048 RSA-2048 RSA-2048 848 RSA-2048 RSA-2048 1376 RSA-2048

(X25519) 64 256 272 256 272 256 272 2711

Min. incl.
int. CA cert.

SFXG SIKE Falcon Falcon XMSS
MT

s 2971 XMSS
MT

s
GeMSS 3035 GeMSS

405 690 897 979 32 32 352180 4056

Min. excl.
int. CA cert.

SFGG SIKE Falcon Falcon GeMSS 2024 GeMSS GeMSS 354236 GeMSS

405 690 897 32 352180 32 352180 355737

Assumption:
MLWE+MSIS

KDDD Kyber Dilithium Dilithium Dilithium 6808 Dilithium Dilithium 10036 Dilithium

1536 2044 1184 2044 1184 2044 1184 11094

Assumption:
NTRU

NFFF NTRU Falcon Falcon Falcon 3675 Falcon Falcon 5262 Falcon

1398 690 897 690 897 690 897 6227

K
EM

TL
S

Min. incl.
int. CA cert.

SSXG SIKE SIKE SIKE XMSS
MT

s 1789 XMSS
MT

s
GeMSS 1853 GeMSS

405 209 196 979 32 32 352180 2898

Min. excl.
int. CA cert.

SSGG SIKE SIKE SIKE GeMSS 842 GeMSS GeMSS 353054 GeMSS

405 209 196 32 352180 32 352180 354578

Assumption:
MLWE+MSIS

KKDD Kyber Kyber Kyber Dilithium 5116 Dilithium Dilithium 8344 Dilithium

1536 736 800 2044 1184 2044 1184 9398

Assumption:
NTRU

NNFF NTRU NTRU NTRU Falcon 3486 Falcon Falcon 5073 Falcon

1398 699 699 690 897 690 897 6066

We call the level-1 parameter set of XMSS that we use in our exper-

iments XMSS
MT

s
; details are given in Appendix D. In our scenarios

we do not take XMSS as an option for signatures generated by TLS

servers, because we do not trust typical TLS servers to securely

manage the state; but CAs might be able to do so safely.

Table 1 shows the scenarios and primitives we consider (and

the abbreviations we use in the rest of the text to refer to each

combination), as well as the resulting communication sizes.
7

The post-quantum KEMs we use are:

• SIKEp434-compressed [60] as the KEM with the smallest

sum of ciphertext and public key;

• Kyber-512 [98] as an efficient Module-LWE-based KEM; and

• NTRU-HPS-2048509 [109] as an efficient NTRU-based KEM.

The signature schemes we use are:

• GeMSS-128 [26] as the scheme with the smallest signature;

• XMSS
MT

s
[55], specified in Appendix D, as the scheme with

the smallest sum of signature and public key;

• Falcon-512 [90] as an efficient scheme based on the NTRU

assumption and the stateless scheme with the smallest sum

of signature and public key; and

• Dilithium II [78] as an efficient scheme based on Module-

LWE and Module-SIS.

Caching of intermediate CA certificates. For a client to authen-
ticate a server it typically uses a chain of certificates starting with

a root CA’s certificate, followed by at least one intermediate CA

certificate, and finally the leaf certificate of the actual server. If

clients cache the intermediate CA certificates, those do not need

to be transmitted. Although not yet widely adopted, this option is

available in TLS via the Cached Information Extension [97].

The obvious consequences of such caching are that less data is

transmitted and that fewer signatures need to be verified. A less

obvious consequence is the significant impact on the optimal choice

7
For comparison purposes, we also show the sum of the total TCP payload data for

the TLS handshake, although this is partially implementation-dependent. The number

of algorithms for which support is advertised for example affects this size.

of (post-quantum) signature scheme for intermediate CAs. If the

signed public keys of intermediate CAs are transmitted only once

and then cached, what matters most is the size of the signature.

This makesMQ-based schemes like Rainbow [34] or GeMSS [26]

with their small signatures but large public keys optimal for use in

intermediate CA certificates. The same applies in any case to root

CAs, as their public keys are assumed to be pre-installed.

We investigate both scenarios: including transmission and verifi-

cation of intermediate CA certificates (i.e., without caching), and

excluding transmission and verification of intermediate CA certifi-

cates (i.e., with caching). For the “including” scenario, we have a

single intermediate CA certificate in the chain.

5.2 Implementation
To experimentally evaluate KEMTLS, we implemented it by mod-

ifying Rustls [15], a modern TLS library written in Rust. Rustls

provides a clean implementation of TLS 1.3 that was easier to mod-

ify than OpenSSL, and provides comparable performance [16]. It

uses the Ring [101] library for cryptography and WebPKI [102]

for certificate validation. Both of these are also written in Rust,

although Ring links to C implementations from BoringSSL [48].

We first added support for KEM-based key agreement to Ring

by changing its ephemeral key-agreement API, designed for Diffie–

Hellman key agreement, to a KEM-style API. We updated Rustls to

use this new API. Then, we integrated KEMs from PQClean [62],

a project that collects cleaned-up implementations of the NIST

PQC candidate schemes. Because PQClean provides a standardized,

namespaced API, it is straightforward to link together these im-

plementations. We took SIKE and all signature schemes from the

Open Quantum Safe (OQS) library [106], although many of the

relevant implementations in liboqs came from PQClean initially.

Where PQClean and OQS did not provide implementations using

architecture-specific optimizations (most importantly, AVX2 vector

instructions), we ad-hoc integrated those ourselves.

Specifically, we use the AVX2-accelerated code from PQClean for

Session 5B: Secure Messaging and Key Exchange CCS '20, November 9–13, 2020, Virtual Event, USA

1470

Table 2: Average time in ms for asymmetric crypto operations and handshake establishment

Computation time for asymmetric crypto Handshake time (31.1ms latency, 1000Mbps bandwidth) Handshake time (195.6ms latency, 10Mbps bandwidth)
Excl. int. CA cert. Incl. int. CA cert. Excl. int. CA cert. Incl. int. CA cert. Excl. int. CA cert. Incl. int. CA cert.
Client Server Client Server Client Client Server Client Client Server Client Client Server Client Client Server

sent req. recv. resp. HS done sent req. recv. resp. HS done sent req. recv. resp. HS done sent req. recv. resp. HS done

T
L
S
1
.3

ERRR 0.134 0.629 0.150 0.629 66.4 97.6 35.4 66.6 97.8 35.6 397.1 593.3 201.3 398.2 594.3 202.3

SFXG 40.058 21.676 40.094 21.676 165.8 196.9 134.0 166.2 197.3 134.4 482.1 678.4 285.8 482.5 678.8 286.2

SFGG 34.104 21.676 34.141 21.676 154.9 186.0 123.1 259.0 290.2 227.1 473.7 669.8 277.5 10936.3 11902.5 10384.1

KDDD 0.080 0.087 0.111 0.087 64.3 95.5 33.3 64.8 96.0 33.8 411.6 852.4 446.1 415.9 854.7 448.0

NFFF 0.141 0.254 0.181 0.254 65.1 96.3 34.1 65.6 96.9 34.7 398.1 662.2 269.2 406.7 842.8 443.5

K
EM

TL
S SSXG 61.456 41.712 61.493 41.712 202.1 268.8 205.6 202.3 269.1 205.9 505.8 732.0 339.7 506.1 732.4 340.1

SSGG 55.503 41.712 55.540 41.712 190.4 256.6 193.4 293.3 359.5 296.3 496.8 723.0 330.8 10859.5 11861.0 10331.7

KKDD 0.060 0.021 0.091 0.021 63.4 95.0 32.7 63.9 95.5 33.2 399.2 835.1 439.9 418.9 864.2 447.6

NNFF 0.118 0.027 0.158 0.027 63.6 95.2 32.9 64.2 95.8 33.5 396.2 593.4 200.6 400.0 835.6 440.2

Label syntax: ABCD: A = ephemeral key exchange, B = leaf certificate, C = intermediate CA certificate, D = root certificate.

Label values: Dilithium, ECDH X25519, Falcon, GeMSS, Kyber, NTRU, RSA-2048, SIKE, XMSS
MT

s
; all level-1 schemes.

Kyber and Dilithium. The AVX2-optimized implementation of SIKE

comes from OQS. We ad-hoc integrated AVX2-accelerated imple-

mentations of GeMSS and Falcon, provided by their submitters, into

PQClean, and used OQS’s scripts to import those into liboqs. For
XMSS

MT

s
, we used the reference implementation of XMSS, which

uses an optimized C implementation of SHAKE-128 for hashing.

The pre-quantum and symmetric algorithms are provided by Ring.

To support TLS 1.3 with post-quantum primitives in Rustls, we

simply added the KEMs to the list of supported key-exchange al-

gorithms in Rustls. By hard-coding the key share offered by the

client, we can then easily force a certain KEM to be used for key

exchange. We added the supported signature algorithms to Rustls,

Ring, and WebPKI. In various places we needed to update RSA- and

EC-inspired assumptions on the sizes of key shares and certificates.

For example, Rustls did not expect certificates to be larger than

64 KB, instead of the 16MB allowed by the RFC [92, App. B.3.3].

Supporting KEMTLS required changing the state machine, for

which we modified the TLS 1.3 implementation in Rustls to suit

our new handshake. To authenticate using KEM certificates, we

added encapsulation and decapsulation using certificates and the

corresponding private keys to WebPKI. Rustls and WebPKI do not

support creating certificates, so we created a script for that.

6 EVALUATION OF KEMTLS VS. TLS 1.3
In this section we compare KEMTLS to TLS 1.3 with post-quantum

signatures and key exchange. We first give a comparison in terms

of handshake size and speed and then move to properties beyond

performance, including consequences for PQ signature design.

6.1 Handshake sizes
Table 1 shows the size of public-key cryptographic objects trans-

mitted in KEMTLS versus TLS 1.3.

In scenarios aiming to minimize communication size, switching

from TLS 1.3 to KEMTLS can reduce the total number of bytes

transmitted in a handshake by 38% from 3035 (SFXG) to 1853 (SSXG),

when including intermediate CA certificates, or by 58% from 2024

(SFGG) to 842 (SSGG), when excluding intermediate CA certificates.

In scenarios with much faster lattice-based cryptography, switch-

ing from TLS 1.3 to KEMTLS also reduces handshake size. For exam-

ple, when switching TLS 1.3 with Kyber key exchange and Dilithium

authentication (KDDD) to KEMTLS with Kyber ephemeral and au-

thenticated key exchange and Dilithium signatures only in cer-

tificates (KKDD), handshake size reduces by 16% from 10036 B to

8344 B when including intermediate CA certificates, and by 24%

from 6808 B to 5116 B when excluding intermediate CA certificates.

6.2 Speed measurements

Benchmarking methodology. In our experiments we use the ex-

ample TLS client and server implementations provided by Rustls,

modifying the client to allow measuring more than one handshake

in a loop. We instrument the handshake to print nanoseconds

elapsed, starting from either sending or receiving the initial message

until operations of interest for both client and server.

We follow the same methodology as [86] for setting up emu-

lated networks. The measurements are done using the Linux ker-

nel’s network namespacing [13] and network emulation (NetEm)
features [50]. We create network namespaces for the clients and

the servers and create virtual network interfaces in those names-

paces. We vary the latency and bandwidth of the emulated network.

NetEm adds a latency to the outgoing packets, so to add a latency

of 𝑥 ms, we add 𝑥/2ms of latency to the client and server inter-

faces; following [86], we consider round-trip times (RTT) of 31.1ms

(representing an transcontinental connection) and 195.6ms (repre-

senting a trans-Pacific connection). We also throttle the bandwidth

of the virtual interfaces, considering both 1000Mbps and 10Mbps

connections. We do not vary packet loss rate, fixing it at 0%.

We ran measurements on a server with two Intel Xeon Gold 6230

(Cascade Lake) CPUs, each featuring 20 physical cores, which gives

us 80 hyperthreaded cores in total. For the measurements, we run

forty clients and servers in parallel, such that each process has its

own (hyperthreaded) core. We measured 100000 handshakes for

each scheme and set of network parameters.

Handshake times. Table 2 (middle) shows handshake times for a

high-speed internet connection, with 31.1ms RTT and 1000Mbps

bandwidth. Table 2 (right) shows handshake times for a slower con-

nection with an RTT of 195.6ms and a bandwidth limit of 10Mbps.

In both scenarios the client sends a request to the server, to which

the server replies, modeling an HTTP request. We highlight in

bold-face the time until the client receives the response.

For the size-optimized instantiations of KEMTLS, i.e., SSXG and

SSGG, we see a slowdown compared to the corresponding SFXG and

SFGG instantiations of TLS 1.3, due to the rather high computational

cost of the additional usage of compressed SIKE. For the NTRU

Session 5B: Secure Messaging and Key Exchange CCS '20, November 9–13, 2020, Virtual Event, USA

1471

and module-lattice instantiations, we see a mild increase in speed,

which becomes more notable on slower connections. This effect is

only to a very small extent due to faster computations, but rather

an effect of smaller amounts of data being transmitted.

The handshake times including transmission of intermediate CA

certificates with GeMSS public keys (i.e., SFGG and SSGG) require

more round trips, because our benchmarks use the “standard” TCP

initial congestion window (initcwnd) value of 10 maximum seg-

ment size (MSS). Eliminating this would require a massive increase

of initcwnd to around 200MSS. See discussion in [100, Sec. VII-C].

CPU cycles for asymmetric crypto. For busy Internet servers

performing large numbers of TLS handshakes, as well as battery-

powered clients, another interesting performance criterion is the

computational effort spent on cryptographic operations. For fast

lattice-based schemes the differences in computational effort are not

visible from handshake timings, because computation needs orders

of magnitude less time than network communication. We report

time in ms for asymmetric-crypto computations (signing, verifying,

key generation, encapsulation, and decapsulation) in Table 2 (left).

As with handshake times, we see the impact of rather slow SIKE

key encapsulation and the resulting increase in computational effort

when switching from TLS 1.3 with Falcon for authentication (SFXG

and SFGG) to KEMTLS with SIKE for authentication (SSXG and

SSGG). However, for instantiationswith stronger focus on speed, we

see a moderate decrease in computational effort on the client side,

e.g., 16%when switching fromNFFF to NNFF, excluding verification

of intermediate CA certificates. More importantly, we see a massive

decrease in computational effort on the server side: saving more

than 75% when switching from KDDD to KKDD and almost 90%

when switching from NFFF to NNFF.

6.3 Other characteristics
Who can first send application data. In TLS 1.3, the server is
able to send the first application data after receiving ClientHello,
i.e., in parallel with its first handshake message to the client and

before having received an application-level request from the client.

This feature is used, for example, in SMTPS to send a server banner

to the client. But this feature is not used in many other applications

of TLS, including the most prominent one, HTTPS. In KEMTLS, it
is the client that is ready to send application data first. This does

incur a small overhead in protocols that require a client to receive,

for example, a server banner. However, for most typical application

scenarios, including HTTPS, in which the client sends a request

before receiving any data from the server, this is not a problem.

Smaller TCB in core handshake. The core KEMTLS handshake

is free of signatures, which reduces the trusted code base. Notably,

KEMTLS servers no longer need efficient and secure implemen-

tations of signing, a routine that has been the target of various

side-channel attacks [7, 23, 47, 59, 108]. With KEMTLS, signatures
are only generated in the more confined and secured environment

of certificate authorities. The effect is less notable on the client side,

because clients still need code to verify signatures in certificates.

However, this code does not deal with any secret data and thus

does not need side-channel protection. The same argument applies

for servers in KEMTLS with client authentication as in Appendix C.

For some combinations of algorithms, clever tweaks could also

reduce the TCB size; for example, in SSXG or SSGG, running SIKE

‘in reverse’ for the ephemeral KEM would allow the client to only

do degree-2 isogeny operations, also increasing client performance.

Reducing the amount of (trusted) code is particularly attractive for

embedded devices, which typically have tight constraints on code

size and are often exposed to a variety of side-channel attacks.

Requirements for post-quantum signatures. Many PQ signa-

ture schemes can tweak parameters to make different trade-offs

between signature size, signing speed, public-key size, and veri-

fication speed. One common direction to optimize for is signing

speed, or more precisely signing latency reported as the number

of clock cycles for a single signature. The common motivation for

this optimization is the use of online signatures in handshake pro-

tocols like the one used in TLS 1.3 (and earlier versions) or the

SIGMA handshake approach [66] used, for example, in the Internet

key-exchange protocol (IKE) [63].

In KEMTLS, signatures are only needed for certificates and thus

computed offline. This eliminates the requirement for low-latency

signing; what remains important (depending to some extent on

certificate-caching strategies) is signature size, public-key size, ver-

ification latency, and—at least for certificate authorities—signing

throughput. However, throughput can easily be achieved for any

signature scheme by signing the root of an XMSS or LMS tree and

using the leaves of that tree to sign a batch of messages. See [79,

Sec. 6] and the XMSS discussion in Appendix D.

7 CONCLUSION AND FUTUREWORK
In this paper we presented KEMTLS, an alternative to the TLS

handshake using a KEM for both key exchange and authentication,

yielding significant advantages in terms of communication size and

performance compared to TLS 1.3 with post-quantum signatures.

Our analysis only considered the worst-case scenario for KEM-
TLS, in which a client has no prior knowledge of the server’s certifi-

cate when establishing a connection. This is currently the common

case for HTTPS, but there are multiple other applications of TLS

that could benefit even more from switching to KEMTLS, where a
servers’ public keys are known to clients. Investigating how KEM-
TLS behaves in these scenarios, and how to best optimize the choice

of algorithms, is an interesting question for future work.

This paper reports results only for select NIST PQC Round 3

finalists and alternate candidates, and only for parameter sets at

NIST security level 1. It will be interesting to expand benchmarks

to KEMTLS and TLS 1.3 with more primitives and parameter sets.

ACKNOWLEDGMENTS
The authors gratefully acknowledge insightful discussions with

Nick Sullivan and Chris Wood, and the helpful comments of several

anonymous reviewers. We thank Felix Günther for several helpful

suggestions, including suggesting simplifying the proof of KEM-
TLS to rely on IND-CCA, not the more complex PRF-ODH-like
assumption in an earlier version of this paper. We thank Nik Unger

for advice on the deniability properties of KEMTLS. This work
has been supported by the European Research Council through

Starting Grant No. 805031 (EPOQUE) and the Natural Sciences

and Engineering Research Council of Canada through Discovery

grant RGPIN-2016-05146 and a Discovery Accelerator Supplement.

Session 5B: Secure Messaging and Key Exchange CCS '20, November 9–13, 2020, Virtual Event, USA

1472

REFERENCES
[1] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry,

Matthew Green, J. Alex Halderman, Nadia Heninger, Drew Springall, Emmanuel

Thomé, Luke Valenta, Benjamin VanderSloot, Eric Wustrow, Santiago Zanella-

Béguelin, and Paul Zimmermann. 2015. Imperfect Forward Secrecy: How Diffie-

Hellman Fails in Practice. InACMCCS 2015, Indrajit Ray, Ninghui Li, and Christo-
pher Kruegel (Eds.). ACM Press, 5–17. https://doi.org/10.1145/2810103.2813707

[2] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. 2016. Post-

quantum Key Exchange - A New Hope. In USENIX Security 2016, Thorsten Holz

and Stefan Savage (Eds.). USENIX Association, 327–343.

[3] Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loic Bidoux, Olivier Blazy, Jean-

Christophe Deneuville, Phillipe Gaborit, Shay Gueron, Tim Guneysu, Carlos

Aguilar Melchor, Rafael Misoczki, Edoardo Persichetti, Nicolas Sendrier, Jean-

Pierre Tillich, Gilles Zémor, and Valentin Vasseur. 2019. BIKE. Technical

Report. National Institute of Standards and Technology. available at https:

//csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions.

[4] Mihir Bellare. 2006. New Proofs for NMAC and HMAC: Security without

Collision-Resistance. In CRYPTO 2006 (LNCS, Vol. 4117), Cynthia Dwork (Ed.).

Springer, Heidelberg, 602–619. https://doi.org/10.1007/11818175_36

[5] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. 1998. A Modular Approach

to the Design and Analysis of Authentication and Key Exchange Protocols

(Extended Abstract). In 30th ACM STOC. ACM Press, 419–428. https://doi.org/

10.1145/276698.276854

[6] Mihir Bellare and Phillip Rogaway. 1994. Entity Authentication and Key Dis-

tribution. In CRYPTO’93 (LNCS, Vol. 773), Douglas R. Stinson (Ed.). Springer,

Heidelberg, 232–249. https://doi.org/10.1007/3-540-48329-2_21

[7] Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval Yarom. 2014. “Ooh

Aah... Just a Little Bit”: A Small Amount of Side Channel Can Go a Long Way. In

CHES 2014 (LNCS, Vol. 8731), Lejla Batina and Matthew Robshaw (Eds.). Springer,

Heidelberg, 75–92. https://doi.org/10.1007/978-3-662-44709-3_5

[8] Daniel J. Bernstein. 2006. Curve25519: New Diffie-Hellman Speed Records. In

PKC 2006 (LNCS, Vol. 3958), Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal

Malkin (Eds.). Springer, Heidelberg, 207–228. https://doi.org/10.1007/11745853_

14

[9] Daniel J. Bernstein. 2019. Re: [pqc-forum] new quantum cryptanalysis of CSIDH.

Posting to the NIST pqc-forum mailing list. https://groups.google.com/a/list.

nist.gov/forum/#!original/pqc-forum/svm1kDy6c54/0gFOLitbAgAJ.

[10] Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny. 2019.

Quantum Circuits for the CSIDH: Optimizing Quantum Evaluation of Isogenies.

In EUROCRYPT 2019, Part II (LNCS, Vol. 11477), Yuval Ishai and Vincent Rijmen

(Eds.). Springer, Heidelberg, 409–441. https://doi.org/10.1007/978-3-030-17656-

3_15

[11] Karthikeyan Bhargavan, Christina Brzuska, Cédric Fournet, Matthew Green,

Markulf Kohlweiss, and Santiago Zanella-Béguelin. 2016. Downgrade Resilience

in Key-Exchange Protocols. In 2016 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, 506–525. https://doi.org/10.1109/SP.2016.37

[12] Jean-François Biasse, Annamaria Iezzi, and Michael J. Jacobson Jr. 2018. A

Note on the Security of CSIDH. In INDOCRYPT 2018 (LNCS, Vol. 11356), Debrup
Chakraborty and Tetsu Iwata (Eds.). Springer, Heidelberg, 153–168. https:

//doi.org/10.1007/978-3-030-05378-9_9

[13] Eric W. Biederman and Nicolas Dichtel. 2013. https://man7.org/linux/man-

pages/man8/ip-netns.8.html man ip netns.
[14] Nina Bindel, Jacqueline Brendel, Marc Fischlin, Brian Goncalves, and Douglas

Stebila. 2019. Hybrid Key Encapsulation Mechanisms and Authenticated Key Ex-

change. In Post-QuantumCryptography - 10th International Conference, PQCrypto
2019, Jintai Ding and Rainer Steinwandt (Eds.). Springer, Heidelberg, 206–226.

https://doi.org/10.1007/978-3-030-25510-7_12

[15] Joseph Birr-Pixton. [n.d.]. A modern TLS library in Rust. https://github.com/

ctz/rustls (accessed 2020-04-23).

[16] Joseph Birr-Pixton. 2019. TLS performance: rustls versus OpenSSL. https://jbp.

io/2019/07/01/rustls-vs-openssl-performance.html

[17] Ethan Blanton, Vern Paxson, and Mark Allman. 2009. TCP Congestion Control.

RFC 5681. https://doi.org/10.17487/RFC5681

[18] Xavier Bonnetain and André Schrottenloher. 2020. Quantum Security Analysis

of CSIDH. In Advances in Cryptology – EUROCRYPT 2020 (LNCS, Vol. 12106),
Anne Canteaut and Yuval Ishai (Eds.). Springer, 493–522. https://eprint.iacr.org/

2018/537.

[19] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,

John M. Schanck, Peter Schwabe, and Damien Stehlé. 2018. CRYSTALS – Kyber:

a CCA-secure module-lattice-based KEM. In 2018 IEEE European Symposium
on Security and Privacy, EuroS&P 2018. IEEE, 353–367. https://cryptojedi.org/
papers/#kyber.

[20] Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. 2015. Post-

Quantum Key Exchange for the TLS Protocol from the Ring Learning with

Errors Problem. In 2015 IEEE Symposium on Security and Privacy. IEEE Computer

Society Press, 553–570. https://doi.org/10.1109/SP.2015.40

[21] Colin Boyd, Yvonne Cliff, Juan Manuel Gonzalez Nieto, and Kenneth G. Paterson.

2009. One-round key exchange in the standard model. IJACT 1 (2009), 181–199.

Issue 3.

[22] Robert T. Braden. 1989. Requirements for Internet Hosts - Communication

Layers. RFC 1122. https://doi.org/10.17487/RFC1122

[23] Billy Bob Brumley and Nicola Tuveri. 2011. Remote Timing Attacks Are Still

Practical. In ESORICS 2011 (LNCS, Vol. 6879), Vijay Atluri and Claudia Díaz (Eds.).
Springer, Heidelberg, 355–371. https://doi.org/10.1007/978-3-642-23822-2_20

[24] Christina Brzuska. 2013. On the foundations of key exchange. Ph.D. Dissertation.
Technische Universität Darmstadt, Darmstadt, Germany. https://tuprints.ulb.tu-

darmstadt.de/3414/.

[25] Christina Brzuska, Marc Fischlin, Bogdan Warinschi, and Stephen C. Williams.

2011. Composability of Bellare-Rogaway key exchange protocols. In ACM CCS
2011, Yan Chen, George Danezis, and Vitaly Shmatikov (Eds.). ACM Press, 51–62.

https://doi.org/10.1145/2046707.2046716

[26] A. Casanova, J.-C. Faugère, G. Macario-Rat, J. Patarin, L. Perret, and J. Ryck-

eghem. 2019. GeMSS. Technical Report. National Institute of Standards

and Technology. available at https://csrc.nist.gov/projects/post-quantum-

cryptography/round-2-submissions.

[27] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost

Renes. 2018. CSIDH: An Efficient Post-Quantum Commutative Group Action.

In ASIACRYPT 2018, Part III (LNCS, Vol. 11274), Thomas Peyrin and Steven

Galbraith (Eds.). Springer, Heidelberg, 395–427. https://doi.org/10.1007/978-3-

030-03332-3_15

[28] Shan Chen, Samuel Jero, Matthew Jagielski, Alexandra Boldyreva, and Cristina

Nita-Rotaru. 2019. Secure Communication Channel Establishment: TLS 1.3

(over TCP Fast Open) vs. QUIC. In ESORICS 2019, Part I (LNCS, Vol. 11735),
Kazue Sako, Steve Schneider, and Peter Y. A. Ryan (Eds.). Springer, Heidelberg,

404–426. https://doi.org/10.1007/978-3-030-29959-0_20

[29] Yuchung Cheng, Jerry Chu, Sivasankar Radhakrishnan, and Arvind Jain. 2014.

TCP Fast Open. RFC 7413. https://doi.org/10.17487/RFC7413

[30] David Cooper, Daniel Apon, Quynh Dang, Michael Davidson, Morris Dworkin,

and Carl Miller. 2019. SP 800-208 (Draft) – Recommendation for Stateful Hash-
Based Signature Schemes. Technical Report. NIST. https://csrc.nist.gov/

publications/detail/sp/800-208/draft.

[31] Eric Crockett, Christian Paquin, and Douglas Stebila. 2019. Prototyp-

ing post-quantum and hybrid key exchange and authentication in

TLS and SSH. Workshop Record of the Second PQC Standardization

Conference. https://csrc.nist.gov/CSRC/media/Events/Second-PQC-

Standardization-Conference/documents/accepted-papers/stebila-prototyping-

post-quantum.pdf.

[32] Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk. 2006. Deniable

authentication and key exchange. In ACM CCS 2006, Ari Juels, Rebecca N.

Wright, and Sabrina De Capitani di Vimercati (Eds.). ACM Press, 400–409. https:

//doi.org/10.1145/1180405.1180454

[33] Denis Diemert and Tibor Jager. 2020. On the Tight Security of TLS 1.3:

Theoretically-Sound Cryptographic Parameters for Real-World Deployments.

Journal of Cryptology (2020). https://eprint.iacr.org/2020/726 To appear.

[34] Jintai Ding, Ming-Shing Chen, Albrecht Petzoldt, Dieter Schmidt, and Bo-

Yin Yang. 2019. Rainbow. Technical Report. National Institute of Standards

and Technology. available at https://csrc.nist.gov/projects/post-quantum-

cryptography/round-2-submissions.

[35] Yevgeniy Dodis, Jonathan Katz, Adam Smith, and Shabsi Walfish. 2009. Compos-

ability and On-Line Deniability of Authentication. In TCC 2009 (LNCS, Vol. 5444),
Omer Reingold (Ed.). Springer, Heidelberg, 146–162. https://doi.org/10.1007/978-

3-642-00457-5_10

[36] Jason A. Donenfeld. 2017. WireGuard: Next Generation Kernel Network Tunnel.

In NDSS 2017. The Internet Society.
[37] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. 2015. A

Cryptographic Analysis of the TLS 1.3 Handshake Protocol Candidates. In ACM
CCS 2015, Indrajit Ray, Ninghui Li, and Christopher Kruegel (Eds.). ACM Press,

1197–1210. https://doi.org/10.1145/2810103.2813653

[38] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. 2016.

A Cryptographic Analysis of the TLS 1.3 draft-10 Full and Pre-shared Key

Handshake Protocol. Cryptology ePrint Archive, Report 2016/081. http://eprint.

iacr.org/2016/081.

[39] BenjaminDowling andDouglas Stebila. 2015. Modelling Ciphersuite and Version

Negotiation in the TLS Protocol. In ACISP 15 (LNCS, Vol. 9144), Ernest Foo and

Douglas Stebila (Eds.). Springer, Heidelberg, 270–288. https://doi.org/10.1007/

978-3-319-19962-7_16

[40] Marc Fischlin and Felix Günther. 2014. Multi-Stage Key Exchange and the

Case of Google’s QUIC Protocol. In ACM CCS 2014, Gail-Joon Ahn, Moti Yung,

and Ninghui Li (Eds.). ACM Press, 1193–1204. https://doi.org/10.1145/2660267.

2660308

[41] Scott Fluhrer. 2016. Cryptanalysis of ring-LWE based key exchange with key

share reuse. Cryptology ePrint Archive, Report 2016/085. https://eprint.iacr.

org/2016/085.

Session 5B: Secure Messaging and Key Exchange CCS '20, November 9–13, 2020, Virtual Event, USA

1473

https://doi.org/10.1145/2810103.2813707
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/11818175_36
https://doi.org/10.1145/276698.276854
https://doi.org/10.1145/276698.276854
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/978-3-662-44709-3_5
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/11745853_14
https://groups.google.com/a/list.nist.gov/forum/#!original/pqc-forum/svm1kDy6c54/0gFOLitbAgAJ
https://groups.google.com/a/list.nist.gov/forum/#!original/pqc-forum/svm1kDy6c54/0gFOLitbAgAJ
https://doi.org/10.1007/978-3-030-17656-3_15
https://doi.org/10.1007/978-3-030-17656-3_15
https://doi.org/10.1109/SP.2016.37
https://doi.org/10.1007/978-3-030-05378-9_9
https://doi.org/10.1007/978-3-030-05378-9_9
https://man7.org/linux/man-pages/man8/ip-netns.8.html
https://man7.org/linux/man-pages/man8/ip-netns.8.html
https://doi.org/10.1007/978-3-030-25510-7_12
https://github.com/ctz/rustls
https://github.com/ctz/rustls
https://jbp.io/2019/07/01/rustls-vs-openssl-performance.html
https://jbp.io/2019/07/01/rustls-vs-openssl-performance.html
https://doi.org/10.17487/RFC5681
https://eprint.iacr.org/2018/537
https://eprint.iacr.org/2018/537
https://cryptojedi.org/papers/#kyber
https://cryptojedi.org/papers/#kyber
https://doi.org/10.1109/SP.2015.40
https://doi.org/10.17487/RFC1122
https://doi.org/10.1007/978-3-642-23822-2_20
https://tuprints.ulb.tu-darmstadt.de/3414/
https://tuprints.ulb.tu-darmstadt.de/3414/
https://doi.org/10.1145/2046707.2046716
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-29959-0_20
https://doi.org/10.17487/RFC7413
https://csrc.nist.gov/publications/detail/sp/800-208/draft
https://csrc.nist.gov/publications/detail/sp/800-208/draft
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/stebila-prototyping-post-quantum.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/stebila-prototyping-post-quantum.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/stebila-prototyping-post-quantum.pdf
https://doi.org/10.1145/1180405.1180454
https://doi.org/10.1145/1180405.1180454
https://eprint.iacr.org/2020/726
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-642-00457-5_10
https://doi.org/10.1007/978-3-642-00457-5_10
https://doi.org/10.1145/2810103.2813653
http://eprint.iacr.org/2016/081
http://eprint.iacr.org/2016/081
https://doi.org/10.1007/978-3-319-19962-7_16
https://doi.org/10.1007/978-3-319-19962-7_16
https://doi.org/10.1145/2660267.2660308
https://doi.org/10.1145/2660267.2660308
https://eprint.iacr.org/2016/085
https://eprint.iacr.org/2016/085

[42] National Institute for Standards and Technology. 2016. Submission Require-

ments and Evaluation Criteria for the Post-Quantum Cryptography Standard-

ization Process. https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-

Cryptography/documents/call-for-proposals-final-dec-2016.pdf.

[43] Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, and Kazuki Yoneyama. 2012.

Strongly Secure Authenticated Key Exchange from Factoring, Codes, and Lat-

tices. In PKC 2012 (LNCS, Vol. 7293), Marc Fischlin, Johannes Buchmann, and

MarkManulis (Eds.). Springer, Heidelberg, 467–484. https://doi.org/10.1007/978-

3-642-30057-8_28

[44] Eiichiro Fujisaki and Tatsuaki Okamoto. 1999. Secure Integration of Asymmetric

and Symmetric Encryption Schemes. In CRYPTO’99 (LNCS, Vol. 1666), Michael J.

Wiener (Ed.). Springer, Heidelberg, 537–554. https://doi.org/10.1007/3-540-

48405-1_34

[45] Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. 2016. On

the Security of Supersingular Isogeny Cryptosystems. In ASIACRYPT 2016,
Part I (LNCS, Vol. 10031), Jung Hee Cheon and Tsuyoshi Takagi (Eds.). Springer,

Heidelberg, 63–91. https://doi.org/10.1007/978-3-662-53887-6_3

[46] Xinwei Gao, Jintai Ding, Lin Li, Saraswathy RV, and Jiqiang Liu. 2018. Efficient

Implementation of Password-based Authenticated Key Exchange from RLWE

and Post-Quantum TLS. Int. J. Netw. Secur. 20, 5 (2018), 923–930.
[47] Cesar Pereida García, Billy Bob Brumley, and Yuval Yarom. 2016. “Make Sure

DSA Signing Exponentiations Really are Constant-Time”. In ACM CCS 2016,
Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers,

and Shai Halevi (Eds.). ACM Press, 1639–1650. https://doi.org/10.1145/2976749.

2978420

[48] Google. [n.d.]. BoringSSL. https://boringssl.googlesource.com/boringssl/

[49] Felix Günther. 2018. Modeling Advanced Security Aspects of Key Exchange and
Secure Channel Protocols. Ph.D. Dissertation. Technische Universität Darmstadt,

Darmstadt, Germany. https://tuprints.ulb.tu-darmstadt.de/7162

[50] Stephen Hemminger, Fabio Ludovici, and Hagen Paul Pfeiffer. 2011. https:

//man7.org/linux/man-pages/man8/tc-netem.8.html man ip netem.
[51] Paul E. Hoffman. 2002. SMTP Service Extension for Secure SMTP over Transport

Layer Security. IETF RFC 3207. https://rfc-editor.org/rfc/rfc3207.txt.

[52] Dennis Hofheinz, KathrinHövelmanns, and Eike Kiltz. 2017. AModular Analysis

of the Fujisaki-Okamoto Transformation. In TCC 2017, Part I (LNCS, Vol. 10677),
Yael Kalai and Leonid Reyzin (Eds.). Springer, Heidelberg, 341–371. https:

//doi.org/10.1007/978-3-319-70500-2_12

[53] Andreas Hülsing, Joost Rijneveld, John M. Schanck, and Peter Schwabe. 2017.

High-Speed Key Encapsulation from NTRU. In CHES 2017 (LNCS, Vol. 10529),
Wieland Fischer and Naofumi Homma (Eds.). Springer, Heidelberg, 232–252.

https://doi.org/10.1007/978-3-319-66787-4_12

[54] Andreas Hülsing, Joost Rijneveld, John M. Schanck, and Peter Schwabe. 2017.

NTRU-KEM-HRSS17: Algorithm Specification and Supporting Documentation.

Submission to the NIST Post-Quantum Cryptography Standardization Project.

https://cryptojedi.org/papers/#ntrukemnist.

[55] Andreas Hülsing, Denis Butin, Stefan-Lukas Gazdag, Joost Rijneveld, and Aziz

Mohaisen. 2018. XMSS: eXtended Merkle Signature Scheme. IETF RFC 8391.

https://rfc-editor.org/rfc/rfc8391.txt.

[56] Andreas Hülsing, Kai-Chun Ning, Peter Schwabe, Florian Weber, and Philip R.

Zimmermann. 2021 (to appear). Post-quantum WireGuard. In 2021 IEEE
Symposium on Security and Privacy". IEEE Computer Society Press. http:

//eprint.iacr.org/2020/379.

[57] Jana Iyengar and Martin Thomson. 2020. QUIC: A UDP-Based Multiplexed and Se-
cure Transport. Internet-Draft draft-ietf-quic-transport-29. Internet Engineering
Task Force. https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-29

[58] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. 2012. On the

Security of TLS-DHE in the Standard Model. In CRYPTO 2012 (LNCS, Vol. 7417),
Reihaneh Safavi-Naini and Ran Canetti (Eds.). Springer, Heidelberg, 273–293.

https://doi.org/10.1007/978-3-642-32009-5_17

[59] Jan Jancar, Petr Svenda, and Vladimir Sedlacek. 2019. Minerva: Lattice attacks

strike again. https://minerva.crocs.fi.muni.cz/ (accessed 2020-04-30).

[60] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De

Feo, Basil Hess, Amir Jalali, Brian Koziel, Brian LaMacchia, Patrick Longa,

Michael Naehrig, Joost Renes, Vladimir Soukharev, David Urbanik, and Geovan-

dro Pereira. 2019. SIKE. Technical Report. National Institute of Standards

and Technology. available at https://csrc.nist.gov/projects/post-quantum-

cryptography/round-2-submissions.

[61] Simon Josefsson. 2006. Storing Certificates in the Domain Name System (DNS).

IETF RFC 4398. https://rfc-editor.org/rfc/rfc4398.txt.

[62] Matthias Kannwischer, Joost Rijneveld, Peter Schwabe, Douglas Stebila, and

Thom Wiggers. [n.d.]. PQClean: clean, portable, tested implementations of post-
quantum cryptography. https://github.com/pqclean/pqclean

[63] Charlie Kaufmann, Paul E. Hoffman, Yoav Nir, and Pasi Eronen. 2014. Internet

Key Exchange Protocol Version 2 (IKEv2). IETF RFC 7296. https://rfc-editor.

org/rfc/rfc7296.txt.

[64] Franziskus Kiefer and Krzysztof Kwiatkowski. 2018. Hybrid ECDHE-SIDH Key
Exchange for TLS. Internet-Draft draft-kiefer-tls-ecdhe-sidh-00. Internet En-
gineering Task Force. https://datatracker.ietf.org/doc/html/draft-kiefer-tls-

ecdhe-sidh-00 Work in Progress.

[65] Hugo Krawczyk. 1996. SKEME: A Versatile Secure Key Exchange for Inter-

net. In Proceedings of Internet Society Symposium on Network and Distributed
Systems Security. IEEE, 114–127. https://www.di-srv.unisa.it/ ads/corso-

security/www/CORSO-9900/oracle/skeme.pdf.

[66] Hugo Krawczyk. 2003. SIGMA: The “SIGn-and-MAc” Approach to Authen-

ticated Diffie-Hellman and Its Use in the IKE Protocols. In CRYPTO 2003
(LNCS, Vol. 2729), Dan Boneh (Ed.). Springer, Heidelberg, 400–425. https:

//doi.org/10.1007/978-3-540-45146-4_24

[67] Hugo Krawczyk. 2005. HMQV: A High-Performance Secure Diffie-Hellman Pro-

tocol. In CRYPTO 2005 (LNCS, Vol. 3621), Victor Shoup (Ed.). Springer, Heidelberg,
546–566. https://doi.org/10.1007/11535218_33

[68] Hugo Krawczyk. 2005. HMQV: A High-Performance Secure Diffie-Hellman

Protocol. Cryptology ePrint Archive, Report 2005/176. http://eprint.iacr.org/

2005/176.

[69] Hugo Krawczyk. 2010. Cryptographic Extraction and Key Derivation: The

HKDF Scheme. In CRYPTO 2010 (LNCS, Vol. 6223), Tal Rabin (Ed.). Springer,

Heidelberg, 631–648. https://doi.org/10.1007/978-3-642-14623-7_34

[70] Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck Wee. 2013. On the Security

of the TLS Protocol: A Systematic Analysis. In CRYPTO 2013, Part I (LNCS,
Vol. 8042), Ran Canetti and Juan A. Garay (Eds.). Springer, Heidelberg, 429–448.

https://doi.org/10.1007/978-3-642-40041-4_24

[71] Hugo Krawczyk and Hoeteck Wee. 2017. The OPTLS Protocol and TLS 1.3. In

Proc. IEEE European Symposium on Security and Privacy (EuroS&P) 2016. IEEE.
https://eprint.iacr.org/2015/978.pdf.

[72] Wouter Kuhnen. 2018. OPTLS revisited. Master’s thesis. Radboud University.

https://www.ru.nl/publish/pages/769526/thesis-final.pdf.

[73] Krzysztof Kwiatkowski, Nick Sullivan, Adam Langley, Dave Levin, and

Alan Mislove. 2019. Measuring TLS key exchange with post-quantum

KEM. Workshop Record of the Second PQC Standardization Confer-

ence. https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-

Conference/documents/accepted-papers/kwiatkowski-measuring-tls.pdf.

[74] Kris Kwiatkowski and Luke Valenta. 2019. The TLS Post-Quantum Experiment.

Post on the Cloudflare blog. https://blog.cloudflare.com/the-tls-post-quantum-

experiment/.

[75] Adam Langley. 2016. CECPQ1 results. Blog post. https://www.imperialviolet.

org/2016/11/28/cecpq1.html.

[76] Adam Langley. 2018. CECPQ2. Blog post. https://www.imperialviolet.org/2018/

12/12/cecpq2.html.

[77] Linux man-pages project. [n.d.]. tcp - TCP protocol. https://man7.org/linux/

man-pages/man7/tcp.7.html

[78] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe,

Gregor Seiler, and Damien Stehlé. 2019. CRYSTALS-DILITHIUM. Technical

Report. National Institute of Standards and Technology. available at https:

//csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions.

[79] David McGrew, Panos Kampanakis, Scott Fluhrer, Stefan-Lukas Gazdag, Denis

Butin, and Johannes Buchmann. 2016. State Management for Hash-Based

Signatures. In Security Standardisation Research (LNCS, Vol. 10074), Lidong Chen,
David McGrew, and Chris Mitchell (Eds.). Springer, 244–260. https://eprint.iacr.

org/2016/357.pdf.

[80] Dustin Moody. 2019. The 2nd Round of the NIST PQC Standardization

Process – Opening Remarks. In NIST Second PQC Standardization Confer-
ence. https://csrc.nist.gov/Presentations/2019/the-2nd-round-of-the-nist-pqc-

standardization-proc

[81] John Nagle. 1984. Congestion Control in IP/TCP Internetworks. RFC 896.

https://doi.org/10.17487/RFC0896

[82] National Institute of Standards and Technology 2015. SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions. National Institute of
Standards and Technology. Federal Information Processing Standards Publica-

tion 202, https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf.

[83] Chris Newman. 1999. Using TLS with IMAP, POP3 and ACAP. IETF RFC 2595.

https://rfc-editor.org/rfc/rfc2595.txt.

[84] OpenSSL. [n.d.]. OpenSSL: The Open Source toolkit for SSL/TLS. https:

//www.openssl.org/ (accessed 2020-04-23).

[85] OpenVPN [n.d.]. OpenVPN Protocol. https://openvpn.net/community-

resources/openvpn-protocol/ (accessed 2020-03-30).

[86] Christian Paquin, Douglas Stebila, and Goutam Tamvada. 2020. Benchmarking

Post-quantum Cryptography in TLS. In Post-Quantum Cryptography - 11th
International Conference, PQCrypto 2020, Jintai Ding and Jean-Pierre Tillich (Eds.).
Springer, Heidelberg, 72–91. https://doi.org/10.1007/978-3-030-44223-1_5

[87] Chris Peikert. 2020. He Gives C-Sieves on the CSIDH. In Advances in Cryptology
– EUROCRYPT 2020 (LNCS, Vol. 12106), Anne Canteaut and Yuval Ishai (Eds.).

Springer, 463–492. https://eprint.iacr.org/2018/537.

[88] Trevor Perrin. 2018. Noise Protocol Framework. https://noiseprotocol.org/

noise.html (accessed 2020-05-01).

[89] Trevor Perrin and Moxie Marlinspike. 2016. The Double Ratchet Algorithm.

https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf.

[90] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim

Session 5B: Secure Messaging and Key Exchange CCS '20, November 9–13, 2020, Virtual Event, USA

1474

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://doi.org/10.1007/978-3-642-30057-8_28
https://doi.org/10.1007/978-3-642-30057-8_28
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1145/2976749.2978420
https://doi.org/10.1145/2976749.2978420
https://boringssl.googlesource.com/boringssl/
https://tuprints.ulb.tu-darmstadt.de/7162
https://man7.org/linux/man-pages/man8/tc-netem.8.html
https://man7.org/linux/man-pages/man8/tc-netem.8.html
https://rfc-editor.org/rfc/rfc3207.txt
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-66787-4_12
https://cryptojedi.org/papers/#ntrukemnist
https://rfc-editor.org/rfc/rfc8391.txt
http://eprint.iacr.org/2020/379
http://eprint.iacr.org/2020/379
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-29
https://doi.org/10.1007/978-3-642-32009-5_17
https://minerva.crocs.fi.muni.cz/
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://rfc-editor.org/rfc/rfc4398.txt
https://github.com/pqclean/pqclean
https://rfc-editor.org/rfc/rfc7296.txt
https://rfc-editor.org/rfc/rfc7296.txt
https://datatracker.ietf.org/doc/html/draft-kiefer-tls-ecdhe-sidh-00
https://datatracker.ietf.org/doc/html/draft-kiefer-tls-ecdhe-sidh-00
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/11535218_33
http://eprint.iacr.org/2005/176
http://eprint.iacr.org/2005/176
https://doi.org/10.1007/978-3-642-14623-7_34
https://doi.org/10.1007/978-3-642-40041-4_24
https://eprint.iacr.org/2015/978.pdf
https://www.ru.nl/publish/pages/769526/thesis-final.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kwiatkowski-measuring-tls.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kwiatkowski-measuring-tls.pdf
https://blog.cloudflare.com/the-tls-post-quantum-experiment/
https://blog.cloudflare.com/the-tls-post-quantum-experiment/
https://www.imperialviolet.org/2016/11/28/cecpq1.html
https://www.imperialviolet.org/2016/11/28/cecpq1.html
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://man7.org/linux/man-pages/man7/tcp.7.html
https://man7.org/linux/man-pages/man7/tcp.7.html
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://eprint.iacr.org/2016/357.pdf
https://eprint.iacr.org/2016/357.pdf
https://csrc.nist.gov/Presentations/2019/the-2nd-round-of-the-nist-pqc-standardization-proc
https://csrc.nist.gov/Presentations/2019/the-2nd-round-of-the-nist-pqc-standardization-proc
https://doi.org/10.17487/RFC0896
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://rfc-editor.org/rfc/rfc2595.txt
https://www.openssl.org/
https://www.openssl.org/
https://openvpn.net/community-resources/openvpn-protocol/
https://openvpn.net/community-resources/openvpn-protocol/
https://doi.org/10.1007/978-3-030-44223-1_5
https://eprint.iacr.org/2018/537
https://noiseprotocol.org/noise.html
https://noiseprotocol.org/noise.html
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf

Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William Whyte,

and Zhenfei Zhang. 2019. FALCON. Technical Report. National Institute of
Standards and Technology. available at https://csrc.nist.gov/projects/post-

quantum-cryptography/round-2-submissions.

[91] Eric Rescorla. 2000. HTTP over TLS. IETF RFC 2818. https://rfc-editor.org/rfc/

rfc2818.txt.

[92] Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3.

IETF RFC 8446. https://rfc-editor.org/rfc/rfc8446.txt.

[93] Eric Rescorla, Kazuho Oku, Nick Sullivan, and Christopher A. Wood. 2020. TLS
Encrypted Client Hello. Internet-Draft draft-ietf-tls-esni-07. Internet Engineering
Task Force. https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-07 Work in

Progress.

[94] Eric Rescorla and Nick Sullivan. 2018. Semi-Static Diffie-Hellman Key Es-
tablishment for TLS 1.3. Internet-Draft. Internet Engineering Task Force.

https://tools.ietf.org/html/draft-rescorla-tls13-semistatic-dh-00.

[95] Eric Rescorla, Nick Sullivan, and Christopher A. Wood. 2020. Semi-Static Diffie-
Hellman Key Establishment for TLS 1.3. Internet-Draft. Internet Engineering
Task Force. https://tools.ietf.org/html/draft-rescorla-tls-semistatic-dh-02.

[96] R. L. Rivest, A. Shamir, and L. Adleman. 1978. A method for obtaining digital

signatures and public-key cryptosystems. Commun. ACM 21 (1978), 120–126.

[97] Stefan Santesson and Hannes Tschofenig. 2016. Transport Layer Security (TLS)

Cached Information Extension. IETF RFC 7924. https://rfc-editor.org/rfc/

rfc7924.txt.

[98] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède

Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, and Damien

Stehlé. 2019. CRYSTALS-KYBER. Technical Report. National Institute of Stan-
dards and Technology. available at https://csrc.nist.gov/projects/post-quantum-

cryptography/round-2-submissions.

[99] Dimitrios Sikeridis, Panos Kampanakis, and Michael Devetsikiotis. 2020. Post-

Quantum Authentication in TLS 1.3: A Performance Study. In NDSS 2020. The
Internet Society.

[100] Dimitrios Sikeridis, Panos Kampanakis, and Michael Devetsikiotis. 2020. Post-

Quantum Authentication in TLS 1.3: A Performance Study. Cryptology ePrint

Archive, Report 2020/071. https://eprint.iacr.org/2020/071, updated version

of [99].

[101] Brian Smith. [n.d.]. Ring. https://github.com/briansmith/ring

[102] Brian Smith. [n.d.]. WebPKI. https://github.com/briansmith/webpki

[103] Fang Song. 2014. A Note on Quantum Security for Post-Quantum Cryptography.

In Post-Quantum Cryptography - 6th International Workshop, PQCrypto 2014,
Michele Mosca (Ed.). Springer, Heidelberg, 246–265. https://doi.org/10.1007/978-

3-319-11659-4_15

[104] Douglas Stebila and Michele Mosca. 2016. Post-quantum Key Exchange for the

Internet and the Open Quantum Safe Project. In SAC 2016 (LNCS, Vol. 10532),
Roberto Avanzi and Howard M. Heys (Eds.). Springer, Heidelberg, 14–37. https:

//doi.org/10.1007/978-3-319-69453-5_2

[105] Douglas Steblia, Scott Fluhrer, and Shay Gueron. 2020. Hybrid key exchange in
TLS 1.3. Internet-Draft draft-ietf-tls-hybrid-design-00. Internet Engineering Task
Force. https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-00

Work in Progress.

[106] the Open Quantum Safe project. [n.d.]. Open Quantum Safe. https://

openquantumsafe.org

[107] William Whyte, Zhenfei Zhang, Scott Fluhrer, and Oscar Garcia-Morchon. 2017.

Quantum-Safe Hybrid (QSH) Key Exchange for Transport Layer Security (TLS)
version 1.3. Internet-Draft draft-whyte-qsh-tls13-06. Internet Engineering Task

Force. https://datatracker.ietf.org/doc/html/draft-whyte-qsh-tls13-06 Work in

Progress.

[108] Yuval Yarom, Daniel Genkin, and Nadia Heninger. 2017. CacheBleed: a timing

attack on OpenSSL constant-time RSA. Journal of Cryptographic Engineering 7,

2 (June 2017), 99–112. https://doi.org/10.1007/s13389-017-0152-y

[109] Zhenfei Zhang, Cong Chen, Jeffrey Hoffstein, William Whyte, John M. Schanck,

Andreas Hulsing, Joost Rijneveld, Peter Schwabe, and Oussama Danba. 2019.

NTRUEncrypt. Technical Report. National Institute of Standards and Technology.
available at https://csrc.nist.gov/projects/post-quantum-cryptography/round-

2-submissions.

[110] Zhengyu Zhang, Puwen Wei, and Haiyang Xue. 2019. Tighter Security Proofs

for Post-quantum Key Encapsulation Mechanism in the Multi-challenge Setting.

In CANS 19 (LNCS, Vol. 11829), Yi Mu, Robert H. Deng, and Xinyi Huang (Eds.).

Springer, Heidelberg, 141–160. https://doi.org/10.1007/978-3-030-31578-8_8

A CRYPTOGRAPHIC DEFINITIONS
KEMTLS depends on several cryptographic primitives and standard

security definitions thereof.

Definition A.1 (Hash function and collision resistance). A hash
function H : {0, 1}∗ → {0, 1}𝜆 maps arbitrary-length messages

𝑚 ∈ {0, 1}∗ to a hash value H(𝑚) ∈ {0, 1}𝜆 of fixed length 𝜆 ∈ N.
The collision resistance of a hash function H measures the ability

of an adversary A to find two distinct messages that hash to the

same output:

AdvCOLLH,A = Pr

[
(𝑚,𝑚′)←$A : (𝑚 ̸=𝑚′) ∧ (H(𝑚) = H(𝑚′))

]
.

Definition A.2 (Pseudorandom function). A pseudorandom func-
tion PRF : K × L → {0, 1}𝜆 maps a key 𝑘 ∈ K and a label ℓ ∈ L
to an output of fixed length in {0, 1}𝜆 . The PRF-security of a pseu-

dorandom function PRF measures the ability of an adversary A to

distinguish the output of PRF from random:

AdvPRF-secPRF,A =

���Pr [
𝑘←$K : APRF(𝑘, ·) ⇒ 1

]
− Pr

[
A𝑅(·) ⇒ 1

] ���
where 𝑅 : L → {0, 1}𝜆 is a truly random function.

A pseudorandom function satisfies dual-PRF-security [4] if it is a

pseudorandom function with respect to either of its inputs 𝑘 or ℓ

being the key, i.e., if both PRF and PRF′ : (𝑥,𝑦) ↦→ PRF(𝑦, 𝑥) have
PRF-security.

Definition A.3 (Message authentication code and existential un-
forgeability under chosen message attack). Amessage authentication
codeMAC : K×{0, 1}∗ → {0, 1}𝜆 maps a key 𝑘 ∈ K and a message

𝑚 ∈ {0, 1}∗ to an authentication tag of fixed length in {0, 1}𝜆 . The
existential unforgeability under chosen message attack (EUF-CMA)
measures the ability to forge an authentication tag on a new mes-

sage, given access to a tag-generation oracle, as shown in Fig. 5:

AdvEUF-CMA
MAC,A = Pr

[
𝐺EUF-CMA
MAC,A ⇒ 1

]
.

𝐺EUF-CMA
MAC,A
1: 𝑘←$K
2: 𝐿←$ ∅
3: (𝑚, 𝑡)←$AO
4: return ⟦(𝑡 = MAC(𝑘,𝑚)) ∧ (𝑚 ̸∈ 𝐿)⟧

Oracle O(𝑧)
1: 𝐿 ← 𝐿 ∪ {𝑧}
2: return

MAC(𝑘, 𝑧)

Figure 5: Security experiment for existential unforgeability
under chosen message attack (EUF-CMA-security) of a mes-
sage authentication code MAC.

Key encapsulation mechanisms.
A key encapsulation mechanism KEM is 𝛿-correct [52] if

Pr[KEM.Decapsulate(sk, ct) ̸= ss | (pk, sk)←$ KEM.Keygen();

(ss, ct)←$ KEM.Encapsulate(pk)] ≤ 𝛿.
The IND-CPA, IND-1CCA, and IND-CCA experiments for KEMs

are shown in Figure 6. The advantage of A in breaking IND-atk
security of KEM, for atk ∈ {CPA, 1CCA,CCA}, is AdvIND-atkKEM,A =���Pr [

𝐺 IND-atk
KEM,A ⇒ 1

]
− 1

2

���.
B REDUCTIONIST SECURITY ANALYSIS OF

KEMTLS
Our approach adapts the security model and reductionist security

analysis of the TLS 1.3 handshake by Dowling, Fischlin, Günther,

and Stebila [37, 38] for KEMTLS.

Session 5B: Secure Messaging and Key Exchange CCS '20, November 9–13, 2020, Virtual Event, USA

1475

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://rfc-editor.org/rfc/rfc2818.txt
https://rfc-editor.org/rfc/rfc2818.txt
https://rfc-editor.org/rfc/rfc8446.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-07
https://tools.ietf.org/html/draft-rescorla-tls13-semistatic-dh-00
https://tools.ietf.org/html/draft-rescorla-tls-semistatic-dh-02
https://rfc-editor.org/rfc/rfc7924.txt
https://rfc-editor.org/rfc/rfc7924.txt
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://eprint.iacr.org/2020/071
https://github.com/briansmith/ring
https://github.com/briansmith/webpki
https://doi.org/10.1007/978-3-319-11659-4_15
https://doi.org/10.1007/978-3-319-11659-4_15
https://doi.org/10.1007/978-3-319-69453-5_2
https://doi.org/10.1007/978-3-319-69453-5_2
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-00
https://openquantumsafe.org
https://openquantumsafe.org
https://datatracker.ietf.org/doc/html/draft-whyte-qsh-tls13-06
https://doi.org/10.1007/s13389-017-0152-y
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-030-31578-8_8

𝐺 IND-atk
KEM,A

1: (pk★, sk★)←$ KEM.Keygen()
2: 𝑏←$ {0, 1}
3: (ss★

0
, ct★)←$ KEM.Encapsulate(pk★)

4: ss★
1
←$K

5: 𝑏 ′←$AO (pk★, ct★, ss★
𝑏
)

6: return ⟦𝑏 ′ = 𝑏⟧

Oracle O(ct) for IND-CPA
1: return ⊥

Oracle O(ct) for IND-1CCA and IND-CCA

1: if ct ̸= ct★ (for IND-1CCA: and this is first O query) then
2: return KEM.Decapsulate(sk★, ct)
3: else
4: return ⊥

Figure 6: Security experiments for indistinguishability (IND)
of KEMs under chosen plaintext (atk = CPA), single chosen
ciphertext (atk = 1CCA), and (multiple) chosen ciphertext
(atk = CCA) attacks.

B.1 Model syntax
The set U denotes the set of identities of honest participants in

the system. Identities 𝑆 ∈ U can be associated with a certified

long-term KEM public key pk𝑆 and corresponding private key sk𝑆 .
In the server-only authentication version of KEMTLS, participants
that only act as clients do not have a long-term key.

Each participant can run multiple instances of the protocol, each

of which is called a session. Sessions of a protocol are, for the

purposes of modelling, uniquely identified by some administrative

label, 𝜋 ∈ U × N, which is a pair (𝑈 ,𝑛), such that it identifies

the 𝑛th local session of𝑈 . In a multi-stage protocol, each session

consists of multiple stages, run sequentially with shared state; each

stage aims to establish a key. Let M ∈ N denote the number of

stages.

For each session, each participant maintains the following collec-

tion of session-specific information. Many of the values are vectors

of length M, with values for each stage.

• id ∈ U: the identity of the session owner,
• pid ∈ U ∪ {∗}: the identity of the intended communication

partner. This partner may be unknown, which we indicate

by the wildcard symbol ‘∗’.
• role ∈ {initiator, responder}
• status ∈ {⊥, running, accepted, rejected}M: the status of

each stage key. We set status𝑖 ← accepted when a session

accepts the 𝑖th stage key. When rejecting a key, status𝑖 ←
rejected and the protocol does not continue. Initially set to

(running,⊥×5).
• stage ∈ {0, 1, . . . ,M}: the last accepted stage. Initially set to

0, it is incremented to 𝑖 when status𝑖 reaches accepted.
• sid ∈

(
{0, 1}∗ ∪ {⊥}

)M
: the session identifier in stage 𝑖 . Ini-

tially set to ⊥, it is updated when reaching acceptance in

that stage.

• cid ∈
(
{0, 1}∗ ∪ {⊥}

)M
: the contributive identifier in stage 𝑖 .

Initially set to ⊥ and updated until reaching acceptance in

that stage.

• key ∈ (K ∪ {⊥})M: the key established in stage 𝑖 , which is

set on acceptance. Initially ⊥.
• revealed ∈ {true, false}M: records if the 𝑖th-stage key has

been revealed by the adversary. Initially all false.
• tested ∈ {true, false}M: records if key𝑖 has been tested by

the adversary. Initially all false.
• auth ∈ {1, . . . ,M,∞}M: indicates by which stage a stage

key is considered to be explicitly authenticated: if auth𝑖 = 𝑗 ,
then, once stage 𝑗 has accepted, the key established in stage

𝑖 is considered to be explicitly authenticated. Some keys

may be considered authenticated right away (auth𝑖 = 𝑖),

whereas other keys may only be considered authenticated

retroactively (auth𝑖 > 𝑖), after some additional confirmation

message has been received; somemay never be authenticated

(auth𝑖 = ∞).
• FS ∈ {wfs1,wfs2, fs}M×M: for 𝑗 ≥ 𝑖 , FS𝑖, 𝑗 indicates the type
of forward secrecy expected of stage key 𝑖 , assuming stage 𝑗

has accepted.

• use ∈ {internal, external}M: use𝑖 indicates if a stage-𝑖 key
is used internally in the key exchange protocol. (Internally

used keys require a little bit of extra care when testing them,

while externally used keys may only be used outside the

handshake protocol.)

For a session identified by 𝜋 , we may write 𝜋.𝑋 as shorthand to

refer to that session’s element 𝑋 .

We define the partner of 𝜋 at stage 𝑖 to be the 𝜋 ′ such that 𝜋.sid𝑖 =
𝜋 ′.sid𝑖 ̸= ⊥ and 𝜋.role ̸= 𝜋 ′.role; the contributive partner is defined
analogously using contributive identifiers cid. Correctness requires
that, in a honest joint execution of the protocol, this equality holds

for all stages on acceptance.

B.2 Adversary interaction
Following DFGS [37, 38], our two security properties, Match secu-

rity andMulti-Stage security, take place within the same adversary

interaction model. The adversary A is a probabilistic algorithm

which controls the communication between all parties and thus

can intercept, inject or drop any message. In this type of model,

even two honest parties require A to facilitate communication to

establish a session.

Some combinations of queries will be restricted; for example,

allowing the adversary to both reveal and test a particular session

key would allow the adversary to trivially win the test challenge in

Multi-Stage security, and thus does not model security appropri-

ately. Such a session will be declared unfresh.

The first two queries the adversary has access to model honest

protocol functionality:

• NewSession(𝑈 ,𝑉 , role): Creates a new session 𝜋 with owner

𝜋.id← 𝑈 , intended peer 𝜋.pid← 𝑉 , with 𝜋.role← role. 𝑉
may be left unspecified (𝑉 = ∗).
• Send(𝜋,𝑚): Sends message𝑚 to session 𝜋 . If 𝜋 has not been

created by NewSession, return ⊥. Otherwise, Send runs the

protocol on behalf of 𝜋.id. It will record the updated state,

and return both the response message and 𝜋.status𝜋.stage.

Session 5B: Secure Messaging and Key Exchange CCS '20, November 9–13, 2020, Virtual Event, USA

1476

To initiate a session, the adversary may submit the special

symbol𝑚 = init if 𝜋.role = initiator.
Special handling of acceptance. The adversary may not test

any keys that have already been used. Because internal keys

may be used immediately, Send will pause execution when-

ever any key is accepted, and immediately return accepted
to the adversary. The adversary may choose to test the ses-

sion (or do other operations in other sessions). Whenever

the adversary decides to continue this session, they may

submit Send(𝜋, continue). This will continue the protocol as
specified. We set 𝜋.status𝜋.stage+1 ← running (except when

having accepted the last stage) and return the next protocol

message and 𝜋.status𝜋.stage.
Whenever stage 𝑖 accepts, if there exists a partner 𝜋 ′ of 𝜋 at

stage 𝑖 with 𝜋 ′.tested𝑖 = true, we set 𝜋.tested𝑖 ← true. If the
stage is furthermore an internal-use stage (𝜋.use𝑖 = internal),

we also set 𝜋.key𝑖 ← 𝜋 ′.key𝑖 to ensure session keys are used
consistently.

The next two queries model the adversary’s ability to compro-

mise participants and learn some secret information:

• Reveal(𝜋, 𝑖): Reveals the session key 𝜋.key𝑖 to the adversary,

and records 𝜋.revealed𝑖 ← true. If the session does not exist

or the stage has not accepted, returns ⊥.
• Corrupt(𝑈): Provides the adversary with the long-term se-

cret key sk𝑈 of𝑈 . We record the time of party𝑈 ’s corruption.

The final querymodels the challenge to the adversary of breaking

a key that was established by honest parties:

• Test(𝜋, 𝑖): Challenges the adversary on the indistinguisha-

bility of stage key 𝜋.key𝑖 as follows. If the stage has not

accepted (𝜋.status𝑖 ̸= accepted), or the key has already been
tested (𝜋.tested𝑖 = true), or there exists a partner 𝜋 ′ to 𝜋 at

stage 𝑖 such that 𝜋 ′.tested𝑖 = true, return ⊥.
If the stage 𝑖 key use is internal (𝜋.use𝑖 = internal), a partner

𝜋 ′ to 𝜋 at stage 𝑖 must exist and also have 𝜋 ′.status𝑖+1 = ⊥
(this ensures that any partnered session has also not yet used

the key). If this does not hold, return ⊥.
Set 𝜋.tested𝑖 ← true.
The Test oracle has a uniformly random bit 𝑏, which is fixed

throughout the game. If test bit 𝑏 = 0, we sample a uniformly

random key 𝐾 ←$K . If test bit 𝑏 = 1, we set 𝐾 ← 𝜋.key𝑖 .
To make sure that the selected 𝐾 is consistent with any later

internally used keys, we set 𝜋.key𝑖 = 𝐾 if 𝜋.use𝑖 = internal.

We then ensure consistency with partnered sessions: for ses-

sions 𝜋 ′ that are partner to 𝜋 at stage 𝑖 for which 𝜋 ′.status𝑖 =
accepted, set 𝜋 ′.tested𝑖 ← true, and, if 𝜋.use𝑖 = internal,

set 𝜋 ′.key𝑖 ← 𝐾 .

Return 𝐾 to the adversary.

B.3 Specifics of KEMTLS in the model
For the proofs in the subsequent subsections, KEMTLS is as spec-

ified in Fig. 4, with M = 6 stages. The session identifiers sid𝑖 and
contributive identifiers cid𝑖 for each stage are defined as follows.

Whenever a stage is accepted, its session identifier is set to consist

of a label and all handshake messages up to that point:

sid1 = (“CHTS”, ClientHello . . . ServerHello) ,
sid2 = (“SHTS”, ClientHello . . . ServerHello) ,
sid3 = (“CAHTS”, ClientHello . . . ClientKemCiphertext) ,
sid4 = (“SAHTS”, ClientHello . . . ClientKemCiphertext) ,
sid5 = (“CATS”, ClientHello . . . ClientFinished) ,
sid6 = (“SATS”, ClientHello . . . ServerFinished) .

For the contributive identifiers cid𝑖 we need special care for

the first stage. In stage 𝑖 = 1, the client and server set, upon

sending (client) or receiving (server) the ClientHello message,

cid1 = (“CHTS”, ClientHello). When they next send (server)

or receive (client) the ServerHello response, they update this to

cid1 = sid1. All other contributive identifiers are set to cid𝑖 = sid𝑖
whenever sid𝑖 is set.

Every client session of KEMTLS uses auth = (6, 6, 6, 6, 6, 6), use =
(internal

×4, external×2), and

FS =

©­­­­­­­«

wfs1 wfs1 wfs1 wfs1 wfs1 fs
wfs1 wfs1 wfs1 wfs1 fs

wfs2 wfs2 wfs2 fs
wfs2 wfs2 fs

wfs2 fs
fs

ª®®®®®®®¬
Every server session of KEMTLS uses auth = (∞×6), use =

(internal
×4, external×2), and FS𝑖, 𝑗 = wfs1 for all 𝑗 ≥ 𝑖 .

B.4 Match security
Match security models sound behaviour of session matching: it en-

sures that, for honest sessions, the session identifier 𝜋.sid matches

the partnered 𝜋 ′.sid. (Separately treating the session matching

property of AKE protocols is the approach of [24, 25, 37, 38, 40].)

Definition B.1. Match Security

Let KE be an M-stage key-exchange protocol, and let A be a

probabilistic adversary interacting with KE via the queries defined

in Appendix B.2. A tries to win the following game 𝐺Match
KE,A :

Setup The challenger generates long-term public and private

key pairs

(
pk𝑈 , sk𝑈

)
for each participant 𝑈 ∈ U that re-

quires a long-term key. All keys are provided to A.

Query The adversary has access to the queries NewSession,
Send, Reveal, Corrupt, and Test.

Stop At some point, the adversary stops with no output.

Let 𝜋, 𝜋 ′ be distinct partnered sessions with some stage 𝑖 ∈
{1, . . . ,M} for which 𝜋.sid𝑖 = 𝜋 ′.sid𝑖 ̸= ⊥.

We say that A wins 𝐺Match
KE,A if it can falsify any one of the fol-

lowing conditions:

(1) 𝜋, 𝜋 ′ agree on the same key at every stage 𝑗 ≤ 𝑖 , i.e., they
must have 𝜋.key𝑗 = 𝜋

′.key𝑗 .
(2) 𝜋, 𝜋 ′ have opposite roles: 𝜋.role ̸= 𝜋 ′.role.
(3) 𝜋, 𝜋 ′, partnered in some stage 𝑖 , have set and agree on the

contributive identifier, i.e., 𝜋.cid𝑖 = 𝜋 ′.cid𝑖 ̸= ⊥.
(4) for every stage 𝑗 ≤ 𝑖 of 𝜋 that has reached a (retroactively) ex-

plicitly authenticated state, i.e., such that 𝜋.status𝑖 = accepted

Session 5B: Secure Messaging and Key Exchange CCS '20, November 9–13, 2020, Virtual Event, USA

1477

and 𝑖 ≥ 𝜋.auth𝑗 , the identity of the peer is correct: 𝜋.pid =

𝜋 ′.id.
(5) 𝜋, 𝜋 ′ (not necessarily distinct) have distinct session identi-

fiers across distinct stages 𝑖, 𝑗 : 𝜋.sid𝑖 = 𝜋 ′.sid𝑗 implies 𝑖 = 𝑗 .

(6) 𝜋, 𝜋 ′ do not have any third partner session 𝜋 ′′, i.e., at any
stage 𝑖 , having 𝜋.sid𝑖 = 𝜋 ′.sid𝑖 = 𝜋 ′′.sid𝑖 ̸= ⊥ implies 𝜋 = 𝜋 ′,
𝜋 ′ = 𝜋 ′′, or 𝜋 = 𝜋 ′′.

Theorem B.2. KEMTLS isMatch-secure. In particular, any effi-
cient adversary A has advantage

AdvMatch
KEMTLS,A ≤ 𝑛𝑠 (𝛿𝑒 + 𝛿𝑠) + 𝑛

2

𝑠 /2
|nonce |,

where 𝑛𝑠 is the number of sessions, |nonce| is the length of the nonces
𝑟𝑐 and 𝑟𝑠 in bits, and the ephemeral and long-term KEM algorithms
are assumed to be 𝛿𝑒 - and 𝛿𝑠 -correct, respectively.

Proof. See the full online version of the paper at https://eprint.

iacr.org/2020/534. □

B.5 Multi-Stage security
TheMulti-Stage experiment was introduced by [40] and was also

used by DFGS for TLS 1.3 [37, 38]. In this original formulation,

secrecy of each stage key is defined as being indistinguishable

from a random key, Bellare–Rogaway-style [6]. Our formulation of

Multi-Stage is extended to also model explicit authentication.

We first define the terms fresh and maliciously accept.

Definition B.3 (Freshness). Stage 𝑖 of a session 𝜋 is said to be fresh
if all of the following conditions hold:

(1) the stage key was not revealed (𝜋.revealed𝑖 = false);
(2) the stage key of the partner session at stage 𝑖 , if the partner

exists, has not been revealed (for all 𝑖 , 𝜋 ′ such that 𝜋.sid𝑖 =
𝜋 ′.sid𝑖 , we have that 𝜋 ′.revealed𝑖 = false);

(3) (weak forward secrecy 1) if there exists 𝑗 ≥ 𝑖 such that

𝜋.FS𝑖, 𝑗 = wfs1 and 𝜋.status𝑗 = accepted, then there exists a

contributive partner at stage 𝑖;

(4) (weak forward secrecy 2) if there exists 𝑗 ≥ 𝑖 such that

𝜋.FS𝑖, 𝑗 = wfs2 and 𝜋.status𝑗 = accepted, then there exists a

contributive partner at stage 𝑖 or Corrupt(𝜋.pid) was never
called;

(5) (forward secrecy) if there exists 𝑗 ≥ 𝑖 such that 𝜋.FS𝑖, 𝑗 = fs
and 𝜋.status𝑗 = accepted, then there exists a contributive

partner at stage 𝑖 or Corrupt(𝜋.pid) was not called before

stage 𝑗 of session 𝜋 accepted.

Definition B.4 (Malicious acceptance). Stage 𝑖 of session 𝜋 is said

to have maliciously accepted if all of the following conditions hold:

(1) 𝜋.status𝜋.auth𝑖 = accepted;
(2) there does not exist a unique partner of 𝜋 at stage 𝑖; and

(3) Corrupt(𝜋.pid) was not called before stage 𝑗 of session 𝜋

accepted, where 𝑗 = max{ℓ : 𝜋.statusℓ = accepted}.

Now we can define our version of theMulti-Stage security ex-

periment.

Definition B.5 (Multi-Stage security). Let KE be an M-stage key-

exchange protocol, and let A be a probabilistic adversary interact-

ing with KE via the queries defined in Appendix B.2. The adversary

tries to win the following game 𝐺
Multi-Stage
KE,A :

Setup The challenger generates all long-term keys

(
pk𝑈 , sk𝑈

)
for all identities𝑈 ∈ U and picks a uniformly random bit 𝑏

(for the Test queries). The public keys are provided to A.

Query The adversary has access to the queries NewSession,
Send, Reveal, Corrupt, and Test.

Stop At some point, A stops and outputs their guess 𝑏 ′ of 𝑏.
Finalize The adversarywins the game if either of the following

conditions hold:

(1) all tested stages are fresh (for all 𝑗 , 𝜋 ′ such that 𝜋.tested𝑗 =
true, stage 𝑗 of session 𝜋 ′ is fresh), and 𝑏 ′ = 𝑏; or

(2) there exists a stage that has maliciously accepted;

in which case the experiment 𝐺
Multi-Stage
KE,A outputs 1. Oth-

erwise the adversary has lost the game, in which case the

experiment 𝐺
Multi-Stage
KE,A outputs a uniform bit.

The Multi-Stage-advantage of A is defined as:

AdvMulti-Stage
KE,A =

����Pr [
𝐺
Multi-Stage
KE,A ⇒ 1

]
− 1

2

���� .
Theorem B.6. Let A be an algorithm, and let 𝑛𝑠 be the number

of sessions and 𝑛𝑢 be the number of parties. There exist algorithms
B1, . . . ,B16, described in the proof, such that

AdvMulti-Stage
KEMTLS,A ≤

𝑛2𝑠

2
|nonce | + AdvCOLLH,B1

+ 6𝑛𝑠

©­­­­­­­­­­­­­­­­­­«

𝑛𝑠

©­­­­­­«

AdvIND-1CCAKEMe,B2 +AdvPRF-secHKDF.Extract,B3
+AdvPRF-secHKDF.Expand,B4 +Adv

dual-PRF-sec
HKDF.Extract,B5

+AdvPRF-secHKDF.Expand,B6 +Adv
dual-PRF-sec
HKDF.Extract,B7

+AdvPRF-secHKDF.Expand,B8 +Adv
PRF-sec
HKDF.Expand,B9

ª®®®®®®¬
+ 2𝑛𝑢

©­­­«
AdvIND-CCAKEMs,B10 +Adv

dual-PRF-sec
HKDF.Extract,B11

+AdvPRF-secHKDF.Expand,B12 +Adv
dual-PRF-sec
HKDF.Extract,B13

+AdvPRF-secHKDF.Expand,B14 +Adv
PRF-sec
HKDF.Expand,B15

ª®®®¬
+𝑛𝑢 · AdvEUF-CMA

HMAC,B16

ª®®®®®®®®®®®®®®®®®®¬

.

Proof. See the full online version of the paper at https://eprint.

iacr.org/2020/534. □

C CLIENT-AUTHENTICATION IN KEMTLS
Although perhaps not used much for web browsing, client authen-

tication is an important optional feature of the TLS handshake. In

TLS 1.3 a server can send the client a CertificateRequest mes-

sage. The client replies with its certificate in a ClientCertificate
message and a ClientCertificateVerify message containing a

signature. This allows mutual authentication.

In this section, we show how to extend KEMTLS to provide client
authentication. Fig. 7 adds a client authentication message flow to

KEMTLS.
Recall that we assume that the client does not have the server’s

certificate when initiating the handshake, and similarly the server

does not have the client’s certificate in advance. There may be more

efficient message flows possible if this is the case, which we leave

as future work.

Session 5B: Secure Messaging and Key Exchange CCS '20, November 9–13, 2020, Virtual Event, USA

1478

https://eprint.iacr.org/2020/534
https://eprint.iacr.org/2020/534
https://eprint.iacr.org/2020/534
https://eprint.iacr.org/2020/534

Client Server
TCP SYN

TCP SYN-ACK

(pk𝑒 , sk𝑒)←KEMe.Keygen()
ClientHello: pk𝑒 , 𝑟𝑐 ←$ {0, 1}256, supported algs.

ES←HKDF.Extract(0, 0)
dES←HKDF.Extract(ES, "derived", ∅)

(ss𝑒 , ct𝑒)←KEMe.Encapsulate(pk𝑒)

ServerHello: ct𝑒 , 𝑟𝑠 ←$ {0, 1}256, selected algs.

ss𝑒←KEMe.Decapsulate(ct𝑒 , sk𝑒)

HS←HKDF.Extract(dES, ss𝑒)
accept CHTS←HKDF.Expand(HS, "c hs traffic", CH..SH)

stage 1

accept SHTS←HKDF.Expand(HS, "s hs traffic", CH..SH)
stage 2

dHS←HKDF.Expand(HS, "derived", ∅)
{EncryptedExtensions}𝑠𝑡𝑎𝑔𝑒2

{ServerCertificate}𝑠𝑡𝑎𝑔𝑒2 : cert[pk𝑆], int. CA cert.

{CertificateRequest}𝑠𝑡𝑎𝑔𝑒2

(ss𝑆 , ct𝑆)←KEMs.Encapsulate(pk𝑆)
{ClientKemCiphertext}𝑠𝑡𝑎𝑔𝑒1 : ct𝑆

ss𝑆←KEMs.Decapsulate(ct𝑆 , sk𝑆)

AHS←HKDF.Extract(dHS, ss𝑆)
accept CAHTS←HKDF.Expand(AHS, "c ahs traffic", CH..CKC)

stage 3

accept SAHTS←HKDF.Expand(AHS, "s ahs traffic", CH..CKC)
stage 4

dAHS←HKDF.Expand(AHS, "derived", ∅)
{ClientCertificate}𝑠𝑡𝑎𝑔𝑒3 : cert[pk𝐶], int. CA cert.

(ss𝐶 , ct𝐶)←KEMc.Encapsulate(pk𝐶)
{ServerKemCiphertext}𝑠𝑡𝑎𝑔𝑒4 : ct𝐶

ss𝐶←KEMc.Decapsulate(ct𝐶 , sk𝐶)

MS←HKDF.Extract(dAHS, ss𝐶)
fk𝑐←HKDF.Expand(MS, "c finished", ∅)
fk𝑠←HKDF.Expand(MS, "s finished", ∅)

{ClientFinished}𝑠𝑡𝑎𝑔𝑒3 : CF←HMAC(fk𝑐 , CH..SKC)

abort if CF ̸= HMAC(fk𝑐 , CH..SKC)

accept CATS←HKDF.Expand(MS, "c ap traffic", CH..CF)
stage 5

record layer, AEAD-encrypted with key derived from CATS

{ServerFinished}𝑠𝑡𝑎𝑔𝑒4 : SF←HMAC(fk𝑠 , CH..CF)

abort if SF ̸= HMAC(fk𝑠 , CH..CF)

accept SATS←HKDF.Expand(MS, "s ap traffic", CH..SF)
stage 6

record layer, AEAD-encrypted with key derived from SATS

P
h
a
s
e
1
:
e
p
h
e
m
e
r
a
l
k
e
y
e
x
c
h
a
n
g
e

P
h
a
s
e
2
:
I
m
p
l
i
c
i
t
l
y
a
u
t
h
e
n
t
i
c
a
t
e
d
k
e
y
e
x
c
h
a
n
g
e

P
h
a
s
e
3
:
C
o
n
fi
r
m
a
t
i
o
n
/
e
x
p
l
i
c
i
t
a
u
t
h
e
n
t
i
c
a
t
i
o
n

Figure 7: The KEMTLS handshake with client authentication

C.1 Extending KEMTLS with client
authentication

We permit the client and server to use different KEM algorithms

(KEMc and KEMs, respectively) as that may be desirable for func-

tionality or efficiency purposes.

In TLS 1.3, a server is only allowed to send a CertificateRequest
message if it has been authenticated with a certificate [92, Sec. 4.3.2].

This restriction ensures that the certificate containing the identity

of the client is only revealed to the intended server. Transferring

this property to KEMTLS requires a careful modification of the key

schedule. In the KEMTLS key schedule, we derive the CAHTS and

SAHTS “authenticated” handshake traffic secrets from the shared

secret ss𝑆 encapsulated against the public key in the server’s cer-

tificate. This allows the client to encrypt its certificate such that it

can only be decrypted by someone holding the server certificate’s

private key.

After that, the server encapsulates against the public key con-

tained in the client certificate to compute another shared secret

ss𝐶 . We mix this shared secret ss𝐶 into the derivation ofMS (in a

straightforward extension of the key schedule of KEMTLS). Mixing

together ss𝐶 and ss𝑆 ensures that all application traffic encrypted

under keys derived from MS (stage 5 and 6) will only be legible to

the authenticated server and client; the ephemeral shared secret

ss𝑒 further provides forward secrecy. Additionally, by sending the

ClientFinished message containing a MAC under a key derived

from MS, the client explicitly authenticates itself to the server at

stage 5.

Security properties ofKEMTLSwith client authentication. For
KEMTLS with client authentication, the properties of each stage

key in a client instance are the same as in KEMTLS. The properties
of each stage key in a server instance are as follows:

• Stages 1 and 2:wfs1 fromwhen they are accepted, retroactive

fs once stage 5 has accepted. No authentication at the time

of acceptance, retroactive explicit authentication once stage

5 has accepted. For internal use.

• Stages 3 and 4:wfs2 fromwhen they are accepted, retroactive

fs once stage 5 has accepted. Implicit authentication at the

time of acceptance, retroactive explicit authentication once

stage 5 has accepted. For internal use..

• Stage 5 and 6: fs and explicit authentication from the time

of acceptance; for external use.

Proving this would follow the same approach as game B2, using

the IND-CCA property of KEMc. If the KEM is appropriately secure,

only the intended client should be able to decapsulate and recover

ss𝐶 . Thus, ss𝐶 and theMS value and other keys derived from it, are

implicitly authenticated keys that the adversary should not be able

to compute.

C.2 Alternative protocol flows
The extension sketched in this section introduces an extra round-

trip. This is a consequence of staying close to the existing key

schedule for KEMTLS.
Allowing ServerFinished to be transmitted immediately after

ServerKemCiphertext and deriving SATS then would allow the

server to initiate transmitting data sooner. This would reduce the

overhead to an extra half round-trip, but rely on implicit authenti-

cation. This change however greatly complicates the key schedule,

as ServerFinished would no longer be sent last.

We might also allow the client to send ClientFinished im-

mediately after ClientCertificate. The client would then derive

CATSwithout mixing in ss𝐶 . This would not introduce extra round-
trips before the client can send data, but the data that the client

sent can then not be straightforwardly authenticated.

D XMSS AT NIST SECURITY LEVEL 1
The security of XMSS parameter sets specified in [55] reach NIST

security level 5 (equivalent to AES-256) and above. This high level

Session 5B: Secure Messaging and Key Exchange CCS '20, November 9–13, 2020, Virtual Event, USA

1479

of security has only a very minor impact on computational perfor-

mance, but it does have a significant impact on signature size. The

draft of the NIST standard also considers parameter sets targeting

security level 3 (equivalent to AES-192); the simple modification

is to truncate all hashes to 192 bits. The extension to a parameter

set targeting NIST level 1 is straight-forward: hashes are simply

truncated to 128 bits; we obtain this by using SHAKE-128 [82] with

128 bits of output.

We define XMSS
MT

s
as an instantiation of XMSS

MT
using two

trees of height 12 each, i.e., a total tree height of 24, which limits

the maximum number of signatures per public key to 2
24 ≈ 16.7M.

Increasing this maximum number of signatures to, for example,

2
30 ≈ 1 billion increases signature size by only 96 bytes and has

negligible impact on verification speed. It does have an impact on

key-generation speed and signing latency, but as mentioned in

Section 6.3, latency of signing is not very relevant when used by

certificate authorities as in our paper.

Multi-tree XMSS is particularly well-suited for efficient batch

signing. The idea is to compute one whole tree (of height ℎ/𝑑) on

the lowest level and use it on-the-fly to sign 2
ℎ/𝑑

messages. The

computational effort per signature is then essentially reduced to

one WOTS
+
key-pair generation.

We set the Winternitz parameter in XMSS
MT

s
to 𝑤 = 256 to op-

timize for signature size. Changing to the more common 𝑤 = 16

would increase signature size by about a factor of 2 and speed up

verification by about a factor of 8.

E NOTES ON INTERACTIONS WITH TCP
The TLS protocol is layered on top of the TCP transport layer

protocol. This means that optimizations and settings that apply

to TCP have an effect on the measured behavior. We do not mean

to give an exhaustive analysis of these and their interplay with

KEMTLS. However, we did see some behavior that will be relevant

to anyone trying to reproduce our results in new implementations.

Nagle’s algorithm [22, 81] is a congestion-control algorithm that

is enabled by default on most systems. It attempts to solve the

problem of large streams of TCP packets being sent out, where

each packet is very small. It does this by waiting to send undersized

TCP packets, where the size is less than the maximum segment

size, until all the sent-out data has been acknowledged. Disabling

Nagle’s algorithm, for example by setting the TCP_NODELAY flag on

a socket, will mean TCP packets get sent out immediately as TLS

messages are written to the socket.

However, this leads to a second interaction with the TCP slow

start congestion-control algorithm [17, 22]. This algorithm speci-

fies an initial congestion window size (initcwnd). This is the num-

ber of packets that can be sent out before receiving an acknowl-

edgement. As more acknowledgements get received, the window

increases, but this is not very relevant during the short lifetime

of the TLS and KEMTLS handshakes. The default window size

is set to 10 on current Linux kernels. This is large enough for

most of our algorithm choices to complete the handshake before

running into the maximum window size. However, this is only

true if they only send out (roughly) one TCP packet per message

“flow”, sending messages that follow each other at the same time.

As an example of this, ServerHello, EncryptedExtensions and

ServerCertificate can be sent in the same TCP packet, size of

the certificate permitting. Disabling Nagle’s algorithm would, for

naive implementations, lead to all of the handshake messages being

sent separately. This quickly runs into the slow start algorithm,

which introduces full round-trip delays.

We have found that these effects do not always show up. It seems

implementation strategies, such as asynchronous I/O or synchro-

nous I/O, can also have a great effect on exactly how the messages

are picked up. However, we suggest implementors to consider using

vectored I/O, such as the writev system call. These allow to write

multiple TLS messages to the socket at the same time, allowing

them to be sent in the same TCP packet. Alternatively, consider

explicitly controlling when the socket submits packets to the net-

work, for example by using the TCP_CORK mechanism in the Linux

kernel [77].

During our experiments, we saw such interactions only with the

Kyber and Dilithium KEMTLS instantiation where we included the

intermediate CA certificate in the chain. We do not have a clear

understanding of why exactly this occurred. We were able to patch

our Rustls implementation to use vectored I/O to write to the TCP

socket.
8
This appears to have solved the problems and we saw the

expected performance without having to turn off Nagle’s algorithm

or modifying initcwnd.
8
Themaintainers of Rustls independently also applied this optimization and it appeared

in Rustls 0.18.0.

Session 5B: Secure Messaging and Key Exchange CCS '20, November 9–13, 2020, Virtual Event, USA

1480

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 KEMs
	2.2 Authenticated key exchange from KEMs

	3 The KEMTLS protocol
	4 Security analysis
	4.1 Security model
	4.2 Security properties
	4.3 Discussion of security properties

	5 Instantiation and Implementation
	5.1 Choice of primitives
	5.2 Implementation

	6 Evaluation of KEMTLS vs. TLS 1.3
	6.1 Handshake sizes
	6.2 Speed measurements
	6.3 Other characteristics

	7 Conclusion and future work
	Acknowledgments
	References
	A Cryptographic definitions
	B Reductionist security analysis of KEMTLS
	B.1 Model syntax
	B.2 Adversary interaction
	B.3 Specifics of KEMTLS in the model
	B.4 Match security
	B.5 Multi-Stage security

	C Client-authentication in KEMTLS
	C.1 Extending KEMTLS with client authentication
	C.2 Alternative protocol flows

	D XMSS at NIST security level 1
	E Notes on interactions with TCP

