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ABSTRACT
Certificate authorities in public key infrastructures typically require

entities to prove possession of the secret key corresponding to the

public key they want certified. While this is straightforward for

digital signature schemes, the most efficient solution for public key

encryption and key encapsulation mechanisms (KEMs) requires

an interactive challenge-response protocol, requiring a departure

from current issuance processes. In this work we investigate how

to non-interactively prove possession of a KEM secret key, specifi-

cally for lattice-based KEMs, motivated by the recently proposed

KEMTLS protocol which replaces signature-based authentication

in TLS 1.3 with KEM-based authentication. Although there are var-

ious zero-knowledge (ZK) techniques that can be used to prove

possession of a lattice key, they yield large proofs or are inefficient

to generate. We propose a technique called verifiable generation,
in which a proof of possession is generated at the same time as

the key itself is generated. Our technique is inspired by the Picnic

signature scheme and uses the multi-party-computation-in-the-

head (MPCitH) paradigm; this similarity to a signature scheme

allows us to bind attribute data to the proof of possession, as re-

quired by certificate issuance protocols. We show how to instantiate

this approach for two lattice-based KEMs in Round 3 of the NIST

post-quantum cryptography standardization project, Kyber and

FrodoKEM, and achieve reasonable proof sizes and performance.

Our proofs of possession are faster and an order of magnitude

smaller than the previous best MPCitH technique for knowledge

of a lattice key, and in size-optimized cases can be comparable to

even state-of-the-art direct lattice-based ZK proofs for Kyber. Our

approach relies on a new result showing the uniqueness of Kyber

and FrodoKEM secret keys, even if the requirement that all secret

key components are small is partially relaxed, which may be of

independent interest for improving efficiency of zero-knowledge

proofs for other lattice-based statements.

1 INTRODUCTION
Public key infrastructures (PKIs) operate by issuing certificates

which bind an entity’s public key to identifying information for

that entity [2, 26]. During the enrollment process, the issuing cer-

tificate authority, before agreeing to bind a public / private keypair

to an entity, often requires the requester to demonstrate use of

their private key as a proof of possession (PoP). The most common

proof of possession mechanism is the PKCS#10 Certificate Signing

Request (CSR) [60] which is used in many certificate enrollment

protocols such as CMP [1], ACME [6], EST [62], and SCEP [42].

(See Appendix A for a discussion on the role of PoPs in PKIs.)

CSRs have become ubiquitous in part because they are fully non-

interactive and therefore easily portable. They do not require the

certificate authority (CA) to have real-time communication with

the entity requesting the certificate, so a CSR can be transported

and validated out of band. As an example, web PKI CAs tend to

offer simple certificate enrollment workflows requiring a certificate

requester to paste a CSR into the CA’s web page [6] first. This

allows key generation and CSR creation to take place on a produc-

tion server, after which the certificate request is initiated from a

workstation outside the production network. Even fully automated

certificate issuance protocols such as ACME [6] do not require the

CSR to contain any protocol state information which would force it

to be freshly-generated as part of the certificate issuance exchange.

One major drawback of CSRs is that they require a digital signa-

ture [60], and therefore can only be used for PoP of digital signature-

type keys. Some enrollment protocols such as CMP [1] define PoP

mechanisms for key agreement and encryption keys, however these

are interactive mechanisms requiring either a half or full round trip

of communication between the CA and the certificate requester.

This problem has been side-stepped in many applications, such

as the web PKI, which almost exclusively use certificates containing

digital signature public keys. However, this may not necessarily

be the case in the future, especially in the context of the transi-

tion to post-quantum cryptography. In 2020, Schwabe, Stebila, and

Wiggers [67] proposed the KEMTLS protocol as a replacement for

the TLS 1.3 handshake [64] which uses key encapsulation mech-

anisms (KEMs) for authentication, rather than signatures. Since

post-quantum digital signatures tend to have larger communica-

tion sizes than post-quantum KEMs, KEMTLS can reduce the band-

width needed to establish a post-quantum channel. But KEMTLS

requires certificates containing KEM keys, so one cannot avoid the

question of how to prove possession of a KEM key, preferably in

a non-interactive setting to maintain the flexibility and existing

workflows that use certificate signing requests.
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Lattice-based KEMs are among the leading candidates in the

NIST post-quantum cryptography standardization project, due to a

relatively good mix of speed and communication size. Three of the

five Round 3 finalists are lattice-based KEMs (Kyber, NTRU, and

Saber), as well as one Round 3 alternate candidate (FrodoKEM). In

this paper we focus on Kyber [17, 66] (based on the module learning

with errors (MLWE) problem [49]) and FrodoKEM [18, 58] (based

on the learning with errors (LWE) problem [63]); at a high level,

both have a similar design, which we briefly outline here. Roughly

speaking, in FrodoKEM the public key is a pair of matrices (A,B)
where B = AS + E mod 𝑞 for secret matrices S and E consisting of

small entries. At the 128-bit security level, 𝑞 = 2
15
, “small” means

in [0,±12], and S and E contain 10,240 entries together.

1.1 Existing Zero-Knowledge Techniques
The obvious approach for building a non-interactive proof of posses-

sion for a lattice-based KEM key would be to use zero-knowledge

tools. There are two main techniques: directly building a zero-

knowledge proof for the relevant mathematical operations, or using

a generic technique such as SNARKs [14] or multi-party computa-

tion in-the-head (MPCitH) [44].

Direct lattice-based ZK constructions. There is a long line of re-

search for ZK proofs of knowledge of a lattice secret key, starting

with lattice-based identification schemes [53, 57]. Kawachi et al. [48]

adapted techniques from Stern’s identification scheme [68] based

on syndrome decoding to the lattice setting, which has influenced

several subsequent constructions [50, 52]. Recent direct construc-

tions focusing on proving knowledge of an LWE or short integer

solution (SIS) sample include [12, 16, 36, 54–56], most of which

focus on binary {0, 1} or ternary {−1, 0, 1} secrets. Some include ZK

proofs of verifiable decryption for lattice-based KEMs [36, 54, 56].

The construction yielding the smallest proofs is a recent paper by

Lyubashevsky et al. [54]: its proof takes place in a larger space (e.g.,

a Kyber512 key with modulus 𝑞 = 3329 is embedded in a proof

with modulus ≈ 2
36
) and depends on the hardness of both MSIS

and MLWE in the larger space, so parameters for the proof must be

chosen appropriately to both ensure the proof can be constructed

and that the MSIS and MLWE problems are hard in the larger space.

Generic ZK constructions. There are several constructions based
on zero-knowledge succinct non-interactive arguments of knowl-

edge (zk-SNARKs). del Pina et al. [30] showed how to use Bullet-

proofs [20] to prove knowledge of lattice secret key with proofs as

small as 1.25 kB, but at the cost of relying on a non-post-quantum se-

curity assumption (elliptic curve discrete logarithms) and a 10 second

generation time. Boschini et al. [19] showed how to use the Aurora

SNARK system [10] (for rank-1 constraint systems) for module

LWE/SIS relations, and Beullens [12] gave estimates for using both

Aurora and Ligero [3] (based on probabilistically checkable proofs)

for LWE secrets; however Aurora’s runtimes are estimated to be

dozens of seconds [19]. Baum and Nof [8] showed how to use

MPCitH [44] with preprocessing [47] for ZK proof of knowledge

of binary LWE secrets.

In terms of proof sizes (excluding non-post-quantum construc-

tions [30]), among existing constructions, direct ZK constructions

generally yield the smallest proof sizes, followed by SNARK systems,

followed by MPCitH. Generally, the most relevant input features

affecting performance are the modulus 𝑞, the total number 𝜎 of en-

tries among the secrets S and E (whether they be matrix entries in a

plain LWE instance, or coefficients in a ring-LWE instance, or both

in a module-LWE instance), and the bounds 𝛽 on the absolute value

of the size of the secret entries. However, conducting an apples-to-

apples comparison among the literature is challenging: it is rare

that two papers in this field give example parameterizations that

are directly comparable, they rarely provide direct non-asymptotic

formulas or scripts for calculating parameter sizes, and very few

report runtime results of implementations. Additionally, many con-

structions are principally designed for binary or ternary secrets; for

some there are techniques that can extend to larger secrets bounds

𝛽 by transforming the problem instance, but determining parame-

ters for this extension is non-trivial. Table 1 presents results from

the literature of various schemes in various parameter regimes.

1.2 Our Approach and Contributions
Our overall contribution is non-interactive protocols for proof of

possession of lattice-based KEM keys (with instantiations for Kyber

and FrodoKEM) using a technique called verifiable generation, in

which the PoP is generated at the same time as the key itself.

Definitions for proof of possession. In Section 3, we begin by giving
the syntax for a key generation and proof of possession (KGPOP)

scheme, and consider a special class of combined KGPOP schemes

in which the proof of possession is generated at the same time

as the key. We define two security properties for such schemes:

unforgeability and zero-knowledge of proofs of possession. Roughly
speaking, unforgeability says that it is hard to generate a valid proof

of possession for well-formed public key without the secret key

(defined similarly to signature unforgeability), and zero knowledge

says that proofs leak no information about the secret key (defined

via simulatability in the random oracle model). However, since the

key pair exists not just for the purposes of proof of possession, but

has some intended application purpose (for example, authentication

in KEMTLS), we have to consider composability of the PoP with

the intended application purpose. In the context of an IND-CCA-

secure KEM, in principle it is possible that (i) the PoP for a KEM key

could undermine the confidentiality of the KEM shared secret, or

conversely (ii) that use of the KEM secret key in decapsulation could

undermine the unforgeability of proofs of possession. We handle

this in both directions as follows. For (i), zero-knowledge naturally

models the privacy notion we need. For (ii), we give the adversary

access to an auxiliary secret key usage algorithm that represents use

of the secret key in its intended application; proof of unforgeability

must be shown even in the presence of this oracle. We give a quick

example showing that certificate signing requests (CSRs) [60] are

PoPs within our framework assuming the unforgeability of the

signature scheme and appropriate domain separation between how

CSRs are formatted and how application messages are formatted.

Non-interactive verifiable generation for lattice-based KEMs. Our
main contribution, in Section 4, is a combined key generation and

proof of possession scheme for lattice-based KEMs, based on the

MPCitH paradigm, inspired in part by the Picnic signature scheme

[22, 69]. The design of our scheme is as a 5-round interactive pro-

tocol to which the Fiat–Shamir transform [38] is applied to make a
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Table 1: Comparison of proof sizes and proof generation runtime for several parameter regimes

Scheme Technique Regime 1 Regime 2 Kyber512 Frodo640

Size Size Time Size Time Size Time

Proof of knowledge of secret key (and proof of verifiable decryption, denoted ⋄)

Stern-like [50] ZKP from SIS 2.3MB
†

4.3MB
†

[8] MPCitH 4.1MB 2.4 s ≥ 8.42MB
‡

[16] ZKP from RLWE & RSIS 384 kB
†

[12] Σ-prot. for permuted-kernel 233 kB 444 kB

Ligero [4] zkSNARK from PCPs 157 kB
†

200 kB
†

Aurora [10] zkSNARK for R1CS 72 kB
†

71 kB
†

[36] ZKP from MLWE & MSIS 47 kB, 61 kB
⋄

[55] ZKP from MLWE & MSIS 47 kB
∗

[56] ZKP from MSIS & ext. MLWE 33 kB 43.6 kB
⋄

[54] ZKP from MLWE & MSIS 14 kB 19.0 kB
⋄

Proof of verifiable generation

Ours (31, 26) MPCitH 251 kB 879 kB 52.9 kB 0.006 s 650 kB 0.12 s

Ours (256, 16) MPCitH 155 kB 542 kB 33.4 kB 0.028 s 402 kB 0.63 s

Ours (1626, 12) MPCitH 117 kB 407 kB 25.7 kB 0.109 s 302 kB 2.59 s

Ours (65536, 8) MPCitH 79 kB 272 kB 17.8 kB 3.77 s 203 kB 85.6 s

Empty cell indicates estimates for parameter regime not available in the original paper or subsequent literature.

“Ours (𝑁, 𝜏)” denotes number 𝑁 of MPC-in-the-head parties and number 𝜏 of MPC repetitions.

Regime 1: modulus 𝑞 ≈ 2
32
, number of secret entries 𝜎 = 2048, ternary secrets {−1, 0, 1}, 128-bit security level.

Regime 2: modulus 𝑞 ≈ 2
61
, number of secret entries 𝜎 = 4096, binary secrets {0, 1}, 128-bit security level.

Kyber512: modulus 𝑞 = 3329, number of secret entries 𝜎 = 1024, secret [0,±2], 128-bit security level.

Frodo640: modulus 𝑞 = 2
15
, number of secret entries 𝜎 = 10240, secret [0,±12], 128-bit security level.

†
: Estimates by Beullens [12].

‡
: Estimate by us, using edaBits [35] for comparisons.

∗
: Estimate by Lyubashevsky et al. [56].

⋄
: For proof of verifiable decryption.

Runtime of “Ours” is a single-threaded implementation on Intel Core i7-8565U CPU running at up to 4.6 GHz, compiled with gcc 11.2.0.

non-interactive scheme. Any additional attributes needed by the cer-

tificate issuance process can be incorporated into the Fiat–Shamir

challenge generation, similar to messages in a signature scheme.

The MPC approach is compelling for our relation, B = AS + E
for public A, since it is entirely linear in secret information (S and
E). Linear operations are done “locally” by the parties, and are

free in terms of communication. The main challenge is to ensure

that the values in (S, E) are small – and this is where we benefit

by combining generation of the key and PoP, since we can use

a relatively simple cut-and-choose approach. The basic idea is as

follows. First, we generate more small values than are needed for

the secret key, and commit to all of them, then reveal some fraction

of them to demonstrate that, with high probability, a sufficiently

high number of the remaining values are small. Our analysis of

this step uses a new result showing the uniqueness of Kyber and

FrodoKEM secret keys: we can show that it is sufficient to prove

that only a fraction of secret key components are small. Then the

remaining unrevealed values will be used as the entries of the secret

key fromwhich we will construct the public key. These small values

are the inputs to a simple 𝑁 -party MPC protocol, which is repeated

𝜏 times to prove that B is is computed correctly.

Strictly speaking our proof does not guarantee that a lattice

secret key is perfectly well-formed; it remains possible for a dishon-

est party to generate a key with some non-small entries. But this

approach suffices for the purposes of proof of possession: if Alice

has generated a key honestly, then there is no way for Mallory to

generate a valid proof of possession for Alice’s public key without

effectively recovering Alice’s secret key.

Outline of the security analysis. Using techniques developed for

MPCitH-based signatures, we prove that the scheme is both zero-

knowledge (Lemma 7) and straight-line extractable (Lemma 7, also

known in the literature as online extractable) in the ROM. Our

extractor uses the random oracle queries from a successful prover

to recover a secret key that has mostly small entries and satisfies

the equation B = AS + E. Together with Lemma 4 this immediately

implies unforgeability, since in Lemma 4 we show that the extracted

secret key is unique, even though the PoP may allow a bounded

number of non-small entries. Using the explicit bound given by

Lemma 4, we choose concrete parameters so that the probability

of non-unique keys is negligible, and consequently the secret key

extracted must with high probability be the original one, yield-

ing unforgeability. (Lemma 4 allows relaxation without sacrificing

uniqueness, and may help efficiency of zero-knowledge proofs for

other lattice-based statements; for example the performance of [8]
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may be improved by checking that only a certain fraction of values

are small.)

For our KEMTLS scenario we must handle unforgeability in the

presence of the auxiliary secret key usage oracle corresponding

to KEM decapsulation. We observe that IND-CCA-secure KEMs

constructed via the Fujisaki–Okamoto transform [39, 43] (the class

that includes FrodoKEM and Kyber) have a property we call de-
capsulation simulatability, meaning that in the ROM decapsulation

can be simulated without the secret key; details appear in Appen-

dix B. This allows us to simulate the auxiliary secret key usage

algorithm in the ROM during the proof unforgeability experiment.

Conversely, since our proof is zero-knowledge, security of the KEM

is maintained when it is added to the public key (Appendix C).

Overall, security only relies on the random oracle model plus

a hiding commitment scheme and a pseudorandom generator, as-

sumptions that are already required by FrodoKEM and Kyber and

which follow from a random oracle. Compared with direct ZK con-

structions based on lattice assumptions, such as the state-of-the-art

[54], one major benefit of our approach is that we do not rely on any

significant security assumptions beyond the original scheme (e.g.,

[54] depends on both MLWE and MSIS), Moreover, direct lattice-

based assumptions such as [54] have to select security parameters

for the lattice problem on which the proof is based, which in general

will be different from (and larger than) the security parameters for

the lattice-based key the proof is about. Given the subtleties and

expertise required to pick lattice parameters, it is an advantage

of our scheme that the proof system’s parameters are based on

MPCitH, which is quite a bit simpler to pick parameters for.

Generality of our construction. Our exposition in Section 4 is

phrased in terms of FrodoKEM, but most of it applies directly to

Kyber as well, and we give a version of the uniqueness lemma

(Lemma 4) for Kyber in Section 5. Our approach is flexible and we

expect variants of our design would apply to other LWE, Ring-LWE

or MLWE-based KEMs such as [61].

Implementation. In Section 6 we report on a software implemen-

tation of our scheme including runtime and proof size, for both

Kyber and FrodoKEM at the 128-, 192-, and 256-bit security levels.

We are able to tune the trade-off between proof size and runtime by

varying the number of simulated MPC parties 𝑁 and the number of

MPC repetitions 𝜏 ; the range of trade-offs can be seen in Figure 8.
1

Overall, our MPCitH-based approach for verifiable generation

yields proofs that are at least an order of magnitude smaller than the

previous best MPCitH approach for proof of knowledge of lattice

secrets by Baum and Nof [8]. Compared to direct lattice construc-

tions and post-quantum zkSNARKs, our MPCitH approach remains

generally competitive, and our most sized-optimized parameteri-

zations can in some cases nearly match the state-of-the-art direct

lattice constructions. We summarize some comparative results be-

low; see Table 1 for detailed comparisons across several parameter

regimes. As noted above, direct comparisons with proof of knowl-

edge schemes in the literature can be challenging due to difference

1
Our C implementation of FrodoKEM and Kyber verifiable generation (with AVX2

optimizations for Kyber) can be downloaded at https://github.com/Chair-for-Security-

Engineering/KEM-NIZKPoP , and is accompanied by scripts for calculating proof sizes.

in parameterizations and the non-triviality of extrapolating exist-

ing results to other parameter regimes, especially for non-ternary

secrets. Nonetheless we are able to offer some direct comparisons.

Comparison to MPCitH. For the parameter set given in [8] tar-

geted towards somewhat homomorphic encryption applications

(𝑞 ≈ 2
61
, 𝜎 = 4096, binary secrets), our system yields proof sizes for

the same parameters at sizes as small as 272 kB and of 542 kB for

a reasonable (𝑁, 𝜏) trade-off, which is 7–15× smaller than Baum

and Nof’s solution with a 4.0MB proof and 2.4 second generation

time. To apply Baum and Nof’s protocol to FrodoKEM parameters,

one has change from handling binary secrets to small (absolute

value ≤ 𝛽 = 12). Applying the edaBits construction [35] for inte-

ger comparisons in MPC, we extrapolate that checking Frodo640’s

𝜎 = 10240 secret values have absolute value at most 𝛽 = 12 would

lead to a proof of at least 8.42MB (at just 80 bits of security) with

estimated multi-second runtimes. Our verifiable generation con-

struction yields Frodo640 proofs of possession at sizes as small as

203 kB; as shown in Figure 8, other points in the size–speed tradeoff

space include 402 kB in 0.63 seconds and 799 kB in 0.07 seconds,

which is 11–41× smaller than the Baum and Nof proof.

Comparison to direct lattice constructions. The most extensive

results available for comparison across multiple papers are for a

parameter suite with modulus 𝑞 ≈ 2
32
, 𝜎 = 2048 samples, and

ternary secrets. zkSNARKs achieve proof sizes of 72 kB (Aurora

[10]) or 157 kB (Ligero [3]). Recent ZK proofs based on MLWE and

MSIS achieve proof sizes of 47 kB [36], 33 kB [56], and 14 kB [54].

Our MPCitH-based verifiable generation construction yields PoPs

for this parameter regime at sizes as small as 79 kB and at 156 kB for

a reasonable (𝑁, 𝜏) trade-off, which is comparable with zkSNARKs

but not as good as MLWE- and MSIS-based ZK proofs.

For the Kyber512 parameters (𝑞 = 3329, 𝜎 = 1024 samples, se-

crets ≤ 𝛽 = 2) our scheme compares more favorably with direct

lattice constructions since it scales better with increased secret

bound 𝛽 . Only two papers in the literature report proof sizes for

Kyber512 parameters [54, 56], and even then they only report sizes

for proofs of verifiable decryption, rather than proof of knowledge

of the secret key. Verifiable decryption proofs are a bit larger than

proof of secret key knowledge; although size differences are not

given in [54, 56], in [36] verifiable decryption proofs were about

1.3× bigger. [56]’s proof size for Kyber512 verifiable decryption is

43.6 kB, and for [54] it is 19.0 kB. Our MPCitH-based verifiable gen-

eration construction yields Kyber512 proofs of possession as small

as 17.8 kB (runtime 3.77 seconds); as shown in Figure 8, other points

in the size–speed tradeoff space include 25.7 kB in 109milliseconds,

33.4 kB in 28milliseconds, and 52.9 kB in 6milliseconds.

2 PRELIMINARIES
In this section we review notation and background notions needed

in the rest of the paper.

All adversaries are assumed to be probabilistic polynomial time

algorithms (in our security parameter ^), that are stateful, i.e. if

A appears twice in an security experiment, state may be shared

between instances.

https://github.com/Chair-for-Security-Engineering/KEM-NIZKPoP
https://github.com/Chair-for-Security-Engineering/KEM-NIZKPoP
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FrodoKEM.KeyGen()
1 : seedA←$ {0, 1} lenseedA

2 : A← Frodo.Gen(seedA ) ∈ Z𝑛×𝑛𝑞

3 : seedSE←$ {0, 1} lenseedSE

4 : (r(0) , r(1) . . . , r(2𝑛𝑛−1) ) ← SHAKE(0x5F∥seedSE, 2𝑛𝑛 · len𝜒 )

5 : S𝑇 ← Frodo.SampleMatrix( (r(0) , r(1) , . . . , r(𝑛𝑛−1) ), 𝑛, 𝑛, 𝜒 )

6 : E← Frodo.SampleMatrix( (r(𝑛𝑛) , r(𝑛𝑛+1) , . . . , r(2𝑛𝑛−1) ), 𝑛, 𝑛, 𝜒 )
7 : B← AS + E

8 : return (pk = (seedA,B), sk = S𝑇 )

Frodo.SampleMatrix(r(0) , . . . , r(𝑛1𝑛2−1) ), where r(𝑖 ) ∈ {0, 1}len𝜒
1 : for 𝑖 = 0, . . . , 𝑛1 − 1 do

2 : for 𝑗 = 0, . . . , 𝑛2 − 1 do

3 : E𝑖,𝑗 ← Frodo.Sample(r(𝑖 ·𝑛2+𝑗 ) , 𝜒 )
4 : return E

Figure 1: FrodoKEM key generation algorithm.

A key encapsulation mechanism (KEM) is a triple of algorithms

KEM = (KeyGen, Encaps,Decaps) used to establish randomly cho-

sen keys. The probabilistic algorithm KeyGen(1^ ) outputs a key
pair (pk, sk). The probabilistic algorithm Encaps(pk) outputs a ci-
phertext and key (𝑐, 𝐾), and Decaps(sk, 𝑐) outputs 𝐾 or ⊥ if 𝑐 is

not a valid encapsulation. A KEM with implicit rejection does not

output ⊥ when 𝑐 is invalid, but instead outputs a random 𝐾 .

FrodoKEM [18, 58] is a key encapsulation mechanism based on

the (plain) learning-with-errors problem [63], built on a design

by Lindner and Peikert [51] and using a variant of the Fujisaki–

Okamoto (FO) transform [39, 43, 45] to achieve indistinguishability

under chosen ciphertext attacks (IND-CCA). The FO transform is

described in Appendix B.

For our purposes, it suffices to examine only the key genera-

tion algorithm, the relevant parts of which are shown in Figure 1.

The key generation algorithm of FrodoKEM samples a public seed

seedA used to pseudorandomly generate a matrix A ∈ Z𝑛×𝑛𝑞 . The

algorithm also samples a secret seed seedSE used to pseudoran-

domly generate two secret 𝑛×𝑛 matrices S and E containing entries

sampled from a distribution 𝜒 . The public key is the seed seedA
and the matrix B = AS + E; the secret key is S. The distribution
𝜒 is small relative to the modulus 𝑞, and we will sometimes refer

to small values as a concise way to distinguish between integers

sampled from 𝜒 and elements of Z𝑞 . As a concrete example for

FrodoKEM at the 128-bit security level, 𝑞 = 2
15

and 𝛽 = 12, so 𝜒

yields samples in [0,±12].
Kyber [17, 66] is a KEM based on the module LWE problem

[49]. Very roughly speaking, Kyber can be thought of as similar to

FrodoKEM, but where entries in the matrices A,B, S, E are polyno-

mials in a ring 𝑅𝑞 = Z𝑞 [𝑋 ]/(𝑋𝑑 + 1); see the Kyber specification
for a more precise formulation [66]. As a concrete example of pa-

rameters for Kyber at the 128-bit security level, 𝑞 = 3329, 𝑑 = 256,

𝑛 = 2, and 𝜒 yields samples in [0,±2].

MPC-in-the-head. TheMPC-in-the-head (MPCitH) paradigm [44]

connects two fundamental primitives in cryptography: secure multi-

party computation (MPC) and zero-knowledge proofs, showing that

an MPC protocol for a functionality 𝑓 can be be used to construct

a ZK proof of 𝑥 such that 𝑦 = 𝑓 (𝑥). Since MPC protocols exist (or

can be designed) for most 𝑓 , we can create ZK proofs for arbitrary

circuits. Furthermore, this was shown to be efficient in [40], inspir-

ing many constructions of signature schemes [7, 12, 13, 22, 28, 29,

31, 37, 46, 47, 69], as they need only assume that 𝑓 is a one-way

function (OWF) in the random oracle model, they potentially have

post-quantum security. Conditions under which Fiat–Shamir-based

signature schemes have security in the quantum random oracle

model, are given in [33].

We give a high level explanation of MPCitH, somewhat special-

ized to our use, then give additional details in Section 4 and refer

to the references given above for more details. We create an in-

teractive proof protocol that 𝑓 (𝑥) = 𝑦 (for public 𝑓 , 𝑦) between a

prover P (with secret input 𝑥 ) and verifier V. P starts by additively

secret sharing 𝑥 among the 𝑁 parties, as input to the MPC. Then

P simulates the execution of the MPC protocol; parties record the

messages they exchange (either directly or via broadcast), along

with their input share to form their view of the protocol execution.

The state of the computation remains secret shared until the last

step, when the parties broadcast their shares of 𝑦 so that it may

be reconstructed. P then commits to all 𝑁 views, and sends the

commitment to V, who responds with a random subset of the 𝑁

parties (of size 𝑁 − 1). For these parties P will reveal their views

– we refer to these parties as opened, and the remaining party as

unopened. Given the input shares of the opened parties, and the

messages sent by the unopened party, V can recompute all 𝑁 − 1
views and check that they match those in P’s commitment. The ver-

ifier accepts the proof if the output is 𝑦 and the views match. After

one repetition of this process, V is convinced that P knows 𝑥 with

probability 1/𝑁 . As mentioned above, the MPC protocol for our 𝑓

is very simple as the parties can add secret-shared values locally,
i.e., without communication, and can also multiply secret-shared

values by a public constant locally. Intuitively, the protocol is sound

because V recomputes the circuit, and it is zero-knowledge if the

protocol is (𝑁 − 1)-private, meaning that no information is leaked

about 𝑥 given the state of 𝑁 − 1 parties.
Our protocol of Section 4 is a five-round protocol, where the

first exchange acts as a setup phase (not to be confused with a

preprocessing phase, as in [47]), that establishes the inputs to the

MPC, and the rest of the protocol follows the sketch given above.

3 DEFINING ZERO-KNOWLEDGE PROOFS OF
POSSESSION

In this section, we define the syntax and security properties for

non-interactive proof of possession, as well as give an example of

how Certificate Signing Requests fit our framework.

Definition 1 (Key generation and proof of possession scheme). A
key generation and proof of possession (KGPOP) scheme consists of:

• PoP.KG() $→ (pk, sk): A probabilistic key generation algo-

rithm that outputs a public, secret key pair.

• PoP.PG(pk, sk, attrs) $→ 𝜋 : A probabilistic proof genera-

tion algorithm that takes as input a public key, secret key,
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and attributes attrs ∈ {0, 1}∗, and outputs a proof string 𝜋 .

(In our application, attrs could be the body of a certificate

signing request, for example.)

• PoP.Vf(pk, attrs, 𝜋) → {0, 1}: A deterministic verification

algorithm that takes as input a public key pk, attributes

attrs, and proof 𝜋 , and outputs 1 if the proof is valid, and 0

otherwise.

A more general formalization could be made with a setup proce-

dure for a common reference string (CRS); since our constructions

will not rely on a CRS, we opt to omit the generalization.

A key generation and proof of possession scheme should satisfy

the obvious correctness property: for all attrs,

Pr

[
PoP.Vf(pk, attrs, 𝜋) ⇒ 1

���� (pk, sk) ←$ PoP.KG();
𝜋 ←$ PoP.PG(pk, sk, attrs)

]
= 1.

In our approach for proof-of-possession via verifiable generation,

the key pair and the proof are generated at the same time. We call

such a scheme a combined key generation and proof of possession

scheme, and in this case the two algorithms PoP.KG and PoP.PG

from Definition 1 (which we sometimes refer to as a “separable”

scheme) are replaced with a single algorithm:

• cPoP.KPG(attrs) $→ (pk, sk, 𝜋): A probabilistic key and proof

generation algorithm that takes as input attributes attrs ∈
{0, 1}∗, and outputs a public key pk, secret key sk, and proof
string 𝜋 .

One could build the combined cPoP.KPG in the obvious way

from separable KG and PG: generate the key pair (pk, sk) ←$

PoP.KG(), then the proof 𝜋 ←$ PoP.PG(pk, sk, id), then return

(pk, sk, 𝜋). The corresponding correctness property applies.

Admittedly, combining proof generation with key generation

limits the number of proofs generated, which may be unsatisfactory

for some applications. For certificate issuance, a single proof suffices,

since only a single certificate signing request is needed. (In practice,

even if multiple certificates are requested over time for the same key,

the same certificate signing request is typically used.) Furthermore,

other certificate lifecycle events (such as revocation) can be handled

by binding (into the proof attributes) an additional account key that

authenticates other lifecycle events; see discussion in Section 7.

The main security property we want of a key generation and

proof of possession scheme is unforgeable proofs of possession: it
should be hard for an adversary to construct a valid proof 𝜋 for

a public key without the corresponding secret key. However, we

also need assurance that the PoP can be used safely in conjunction

with the actual cryptographic primitive the corresponding keys are

meant for. In particular, we have to ensure (a) that the PoP function-

ality does not undermine the security of the actual cryptographic

primitive, and (b) use of the secret key in the actual cryptographic

primitive does not undermine security of the PoP. In our case, the

former will follow when the PoP is non-interactive zero knowledge;

the latter will be shown by incorporating (constrained) use of the

secret key into the unforgeability definition for PoPs. (See [24] for

additional considerations on composition of PKIs with protocols.)

We state the formal definition of security for combined proofs of

possession now, then present the details and rationale in Sections 3.1

and 3.2, and give an example of how these definitions apply to

certificate signing requests in Section 3.4.

Exp
UF

PoP,Aux
(A)

1 : (pk, sk) ←$ KG( )
2 : (attrs′, 𝜋 ′ ) ←$

APG(pk,sk,·),Aux(sk,·) (pk)
3 : return Vf(pk, attrs′, 𝜋 ′ )

∧ (attrs′ not queried to PG)

Exp
UF

cPoP,Aux
(A)

1 : attrs←$ A()
2 : (pk, sk, 𝜋 ) ←$ KPG(attrs)

3 : (attrs′, 𝜋 ′ ) ←$ AAux(sk,·) (pk, 𝜋 )
4 : return Vf(pk, attrs′, 𝜋 ′ )

∧ (attrs ≠ attrs
′ )

Figure 2: Security experiment for proof unforgeability of
a key generation and proof of possession scheme PoP =

(KG,PG,Vf) (left) and a combined key generation and proof
of possession scheme cPoP = (KPG,Vf) (right), with respect
to auxiliary secret key usage algorithm Aux.

Definition 2 (Security of Combined PoPs). Let cPoP = (KPG,Vf)
be a combined key generation and proof of possession scheme. We

say that 𝑐PoP is a secure cPoP scheme if it is:

• Zero-knowledge: no efficient adversary exists for the secu-

rity experiment Exp
ZK

PoP
(as shown in Figure 3) as defined

in Definition 3.

• Unforgeable: no efficient adversary exists for the security

experiment Exp
UF

cPoP,Aux
(as shown in Figure 2), for the re-

quired auxiliary secret key usage algorithm Aux.

• Correct: key pairs output by cPoP.KPG are distributed iden-

tically to the KeyGen function of the primitive that defines

the key pair.

To highlight the difference between proof of possession and

proof of knowledge or well-formedness: a proof of possession does

not guarantee that a public key was generated honestly by someone

who knows the secret key, but it does guarantee that an honestly

generated public key cannot be claimed by someone else who does

not know the secret key. In the context of PKI, a proof of possession

does not protect against a malicious party getting a certificate for a

possibly malformed public key, but does protect against a malicious

party getting a certificate for someone else’s public key. This mod-

elling also allows us to cover certificate signing requests, which are

accepted in practice for demonstrating proof of possession but are

not in general a proof of knowledge or well-formedness.

3.1 Unforgeability
The unforgeability security experiment for a KGPOP scheme, shown

in Figure 2, is defined with respect to an auxiliary secret key us-
age algorithm Aux, which models any usage of the secret key in a

subsequent application:

• Aux(sk, 𝑥) $→ 𝑦: A probabilistic or deterministic auxiliary

secret key usage algorithm that takes as input a secret key

sk and input 𝑥 , and produces an output 𝑦.

For example, in a PoP for a KEM key, Aux would correspond to

decapsulation; in a PoP for a signing key, Aux would correspond to

signature generation.

The unforgeability experiment Exp
UF

PoP,Aux
in Figure 2 is analo-

gous to weak existential unforgeability of a signature scheme under

chosen message attacks. A version analogous to strong existential

unforgeability could be had by checking that (attrs′, 𝜋 ′) were not
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the input/output of a query to PG. (While our verifiable generation

construction for FrodoKEM and Kyber does satisfy the stronger

notion, we include the weak unforgeability notion to accommodate

proof-of-possession schemes such as certificate signing requests

built from weakly unforgeable signature schemes such as ECDSA.)

For combined KGPOP schemes, we need a slightly different def-

inition of proof unforgeability: since the proof generation is not

separate from the key generation, the adversary cannot repeat-

edly obtain PoPs. The resulting simplified experiment is shown

in Figure 2. It is analogous to weak existential unforgeability of

a signature scheme under a key-only attack; as above, a strong

existential unforgeability version can be had.

When a combined KGPOP scheme is constructed in the obvious

way from a separable KGPOP scheme, security in the sense of the

former immediately implies security in the sense of the latter.

3.2 Non-Interactive Zero Knowledge
Having defined security such that use of the key in an application

does not affect security the PoP scheme, we now consider the other

direction, and look at security of the application against attackers

that have proofs created by the PoP scheme.

There certainly exist degenerate schemes where the proof of

possession could undermine the intended application. Consider

for example EdDSA [11] with the following proof of possession.

Let (pk, sk) be an ECC key pair. Let the PoP be (𝜎,𝑚) where 𝜎 is

an ECDSA signature on𝑚 = SHA512(sk)∥attrs. Proof verification
checks the ECDSA signature on the provided 𝑚 as usual, with-

out checking whether the first part of the message, SHA512(sk),
has any connection to the public key; this is still a good proof of

possession under the assumption that ECDSA is unforgeable. The

intended use of the key is EdDSA signatures, for TLS authentica-

tion or any other purpose. The PoP is clearly unforgeable under

weak unforgeability of ECDSA, but use of the key in EdDSA is

completely broken since EdDSA uses SHA512(sk) as a PRF key to

derive per-signature nonces. In isolation the two primitives are

secure, but the composition is insecure: the PoP leaks information,

namely SHA512(sk), that compromises the application.

The natural way to protect against such attacks is to require

PoP schemes to be zero-knowledge: they should reveal nothing

more than the fact that the party creating the proof knows sk as-

sociated to a given pk. Our definition is nearly the same as honest

verifier zero-knowledge (see e.g. [15, §19.1.1]) except that (i) we

relax the definition to statistical zero-knowledge [41, Def. 4.3.4] and

(ii) we have the attrs string that is allowed to be chosen arbitrarily,

and is bound to the proof. Our definition also assumes the PoP

is non-interactive, as motivated by our use case, so we note that

the simulator will exist in an idealized model where Sim has some

additional capability, such as the ability to choose system parame-

ters, or simulate hash functions in the random oracle model (ROM).

Otherwise, if Sim was efficiently implementable by any party the

ZK property would exclude the unforgeability property.

Definition 3. Let PoP = (KG, PG,Vf) be a key generation and

proof of possession scheme. We say that PoP is zero-knowledge,
if there exists an efficient probabilistic algorithm Sim, such that,

for all possible outputs (pk, sk) of KG, the output distribution of

Sim(pk, attrs) is statistically close to the output distribution of

Exp
ZK

PoP,Sim
(A)

1 : (pk, sk) ←$ A()
2 : 𝑏←$ {0, 1}

3 : if 𝑏 = 0 then 𝑏′←$ APG(pk,sk,·) ( )

4 : if 𝑏 = 1 then 𝑏′←$ ASim(pk,·) ( )
5 : return ⟦𝑏 = 𝑏′⟧

Exp
ZK

cPoP,Sim
(A)

1 : attrs←$ A()
2 : (pk, sk, 𝜋0 ) ←$ KPG(attrs)
3 : 𝜋1←$ Sim(pk, attrs)
4 : 𝑏←$ {0, 1}
5 : 𝑏′←$ A(𝜋𝑏 )
6 : return ⟦𝑏 = 𝑏′⟧

Figure 3: Security experiment for zero-knowledge of proofs
of possession for a key generation scheme PoP (left) and a
combined key generation and proof of possession scheme
cPoP (right) with respect to simulator Sim.

PG(pk, sk, attrs). More formally, PoP is zero-knowledge if no ef-

ficient adversary exists for Exp
ZK

PoP,Sim
(as shown in Figure 3 (left))

with success probability different from 1/2. For combined KGPOP

schemes, the corresponding experiment is shown in Figure 3 (right).

3.3 Handling Aux Queries for KEMs
Our unforgeability definition in Section 3.1 takes care to model use

of the secret key in an application, so that this use does not allow

an attacker to create a proof of possession for a user’s key after

they use it. This is very broad and in general difficult to handle

(as illustrated in the CSR example of Section 3.4). Fortunately for

our KEMTLS scenario, we can show that unforgeability can be

preserved when the KEM key is in use.

Full details of our approach are in Appendix B; we give the

intuition here. For a KEM, we define the security notion of decap-
sulation simulatability. The decapsulation operation of a KEM is

said to be simulatable if there exists a simulator Sim which takes

a public key pk and ciphertext as input and has outputs that are

indistinguishable from KEM.Decaps. From this, our security proof

for unforgeability (Theorem 8) can simulate use of the KEM key (in

the ROM) and answer Aux queries without using sk. We prove that

KEMs constructed with the variant of the Fujisaki–Okamoto (FO)

transform used in FrodoKEM and Kyber have this property. Our

proof is based on a result of [43] that implicitly defines the required

simulator when proving that FO transform provides CCA security.

3.4 Example: Certificate Signing Requests
To build familiarity with these notions, we observe how a famil-

iar PoP system for signature schemes, certificate signing requests

(CSRs), can be modeled in this framework. CSRs are an example of

a (separable) KGPOP scheme. Let Σ = (Σ.KG, Σ.Sign, Σ.Vf) be a sig-
nature scheme. Define the KGPOP scheme CSR[Σ] = (KG, PG,Vf)
with helper function CSRfmt as follows:

• KG(): Return Σ.KG().
• PG(pk, sk, attrs): Return Σ.Sign(sk,CSRfmt(pk, attrs)).
• Vf(pk, attrs, 𝜋): Return Σ.Vf (pk,CSRfmt(pk, attrs), 𝜋).
• CSRfmt(pk, attrs) → {0, 1}∗: A deterministic CSR format-

ting function that generates the body of a certificate signing
request from a public key pk and attributes attrs, for exam-

ple according to a standards document such as RFC 2986

[60]. We assume CSRfmt is collision-free.
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It is straightforward to see that if Σ has existential unforgeability

under chosen message attack, then it is hard to forge proofs of

possession in CSR[Σ] – after all, PoPs are just signatures.

However, if we want to model that the secret key generated by

CSR[Σ] will then be used as a signing key in some subsequent

application, we have to make use of an auxiliary secret key us-

age algorithm. If the subsequent application (and hence the aux-

iliary secret key usage algorithm) allows an adversary to sign ar-

bitrary messages, then the adversary could just ask it to sign a

well-formatted CSR body. To prevent this, we must enforce some

kind of domain separation. We model this by introducing a function

IsCSR : {0, 1}∗ → {0, 1} that checks if a candidate message is a

valid formatted CSR body, and refuses to sign if it is:

Aux(sk, 𝑥): If IsCSR(𝑥) = 1, then return ⊥,
else return Σ.Sign(sk, 𝑥).

Assuming that IsCSR(𝑥) = 1 for all 𝑥 ← CSRfmt(pk, attrs), it is
then straightforward to prove, via reduction, that CSR[Σ] has un-
forgeable proofs of possession (with respect to the given Aux) in the

sense of Figure 2, assuming Σ is (weakly) existentially unforgeable

under chosen message attack.

The domain separation between CSRs and application messages

can be easy to satisfy in practice, though it still must be verified

for each application. For example, consider digital signatures in

the Web PKI: a server gets an X.509 certificate for its signing key

by creating a CSR as per [60], and subsequently uses the signing

key for authentication in the TLS 1.3 protocol [64]. In this case, a

CSR body is a certain ASN.1 data structure, with various fields and

formatting as specified in [60]; most notably, a CSR body is always

a ASN.1 SEQUENCE object, which in BER or DER encoding means

that the first byte will be hexadecimal 0x10 or hexadecimal 0x30.
In TLS 1.3, signatures are generated over data structures with a

different format as specified in [64, §4.4.3], specifically where the

first byte will be hexadecimal 0x20. Assuming a server only uses

its signing key in TLS, this immediately yields domain separation

that can be modeled via CSRfmt and IsCSR.

4 NON-INTERACTIVE VERIFIABLE
GENERATION FOR LATTICE-BASED KEMS

In this section we give our construction of a non-interactive, com-

bined generation and proof of possession for lattice-based KEMs.

We will focus on FrodoKEM as it is simpler to describe, but the ap-

proach and analysis also works for Kyber and other similar schemes.

We start this section with a technical overview of our construction,

then give full details of the construction for FrodoKEM, discuss

parameter selection and provide a security analysis.

4.1 Technical Overview
Consider proving knowledge of a pair of secret matrices S, E whose

entries are small and satisfy B = AS + E mod 𝑞, where A and B are

public matrices. Let P be the prover and V be the verifier. Let 𝜎 be

the total number of entries in the secret matrices S and E, integers
sampled from a “small” interval according to a distribution 𝜒 . We

describe the protocol as an interactive 5-round protocol between P

and V, as an MPCitH proof with 𝑁 parties.

(1) Commit to small values. P generates 𝑀 > 𝜎 random

small values, where 𝑀 is a parameter. For each of the 𝑀

values, P generates an 𝑁 -party additive secret sharing (mod

𝑞). P commits to the shares and sends the commitment to

V.

(2) Challenge a subset of the small values to audit. V
chooses𝑀 −𝜎 of the small values to audit and sends this as

a challenge to P. The idea is that P has committed to more

than 𝜎 values, and V will check a subset of them, to make

sure they belong to the correct distribution.

(3) Generate keypair, simulate MPC, commit to views,
and open the audited small values. P responds with the

opening of the commitment for each of the audited values.

P uses the unaudited values to construct the secret key

(S, E). Note that the 𝑁 parties have shares of (S, E), and P

has committed to the shares. P randomly generates a matrix

A and computes the public key B = AS + E. Given A, the
parties can compute shares of B using A and the sharings of

S and E (no communication is required among the parties as

this is a linear operation). Finally, P commits to the shares

of B (the views of the parties), and sends (A,B) to V.

(4) Challenge theMPC simulation. V selects 𝑁 −1 parties to
audit. Here the verifier’s goal is to check that the MPC was

executed correctly, namely that B was computed honestly.

(5) Open the MPC views and output the key pair and
proof. P reveals the state of the 𝑁 − 1 audited parties and

outputs the keypair computed in step 3.

(6) Verify final response. V recomputes the 𝑁 − 1 views and
ensures they match the views committed to by P. V also

checks that the𝑀 −𝜎 opened values meet the range criteria

given by 𝜒 . If both checks pass, V outputs accept; otherwise

V rejects.

We will show that for an appropriate choice of𝑀 (relative to 𝜎

and the lattice parameters), V will be assured that the 𝜎 values in

(S, E) are from 𝜒 , except with probability 2
−^

. However, the second

challenge has only soundness 1/𝑁 and necessitates repeating the

protocol 𝜏 times in parallel. These parallel repetitions are not inde-

pendent as they all use the same 𝑀 values sampled from 𝜒 (with

independent sharings in each repetition).

To make this protocol into a non-interactive proof, V’s chal-

lenges are derived with a hash function (in the random oracle model

(ROM) [9]), using the well-known Fiat–Shamir transform [38]. Go-

ing forward we will focus on the non-interactive case, since this is

required by our proof-of-possession scenario.

When viewed as a proof of knowledge, combined KGPOP does

not quite fit the established structure. The problem instance, or

statement 𝑥 (corresponding to matrices A and B) and witness 𝑤

(corresponding to secrets S and E) are negotiated in the first part

of the protocol, rather than fixed in advance. However, because of

the protocol’s commit-and-open structure, in the ROM we can still

extract P’s input including𝑤 (and we prove this in Lemma 7). We

can also simulate transcripts in the ROM for any 𝑥 , to show that the

protocol is statistical honest-verifier zero-knowledge (Lemma 5) in

the ROM.
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4.2 FrodoKEM KGPOP construction
We now provide a full description of the non-interactive verifiable

generation protocol for FrodoKEM. The combined key generation

and proof of possession protocol (cPoP.KPG) is given in Figure 4,

and the verification operation (cPoP.Vf) is given in Figure 5.

Notation. Recall that 𝑞 is the modulus used in FrodoKEM compu-

tations, 𝜏 is the number of parallel repetitions, and 𝑁 is the number

of parties used in the MPC protocol. Let 𝜎 denote the total number

of small integers required for FrodoKEM private values. A bundle
𝐵𝑣 is a collection of 𝜏 sharings of a value 𝑣 between 𝑁 parties in

the ring Z𝑞 . 𝜒 is the distribution used for secrets and errors.

The input to KPG is attrs ∈ {0, 1}∗, the string encoding the

attributes to be bound to the cPoP. We use 𝑥 (𝑖 ) to denote party

𝑃𝑖 ’s share of 𝑥 , and [𝑋 ] to denote the set {1, . . . , 𝑋 }. In the MPC

protocols simulated by the prover, each party can sample their share

of a value 𝑥 from their random tape. This is sufficient when 𝑥 must

be a uniform random value. To share a given value, P provides a

“delta value” computed as:

Δ𝑥 = 𝑥 −
𝑁∑︁
𝑖=1

𝑥 (𝑖 ) .

P makes Δ𝑥 public, and it is added to 𝑃1’s share to correct the

sharing: 𝑥 (1) = 𝑥 (1) + Δ𝑥 .
As we will be working with an 𝑁 − 1 private MPC protocol

with 𝜏 parallel repetitions, in repetition 𝑒 , there is one party that

is unopened, we denote their index by 𝑖𝑒
∗
, or simply 𝑖∗ when the

repetition index is clear from context.

Helper functions. We use the following helper functions to sim-

plify our presentation.

Arrange creates (S, E) from a list of 𝜎 values in a canonical way.

Given a subset 𝐶 of {1, . . . , 𝑀} of size 𝜎 , and values {𝑣1, . . . , 𝑣𝑀 },
let (S, E) = Arrange({𝑣1, . . . , 𝑣𝑀 },𝐶) be the two matrices given by

populating the entries of S and E from the elements 𝑣𝑖 for 𝑖 ∈ 𝐶 ,
starting in the top-left of S and proceeding row-by-row from left to

right, and then continuing with E.
Expand is a function that takes a hash digest, and expands it

into a challenge of the correct form. The function ExpandTape()
takes a seed and expands it into a random tape. These functions

are implemented with an extendable output hash function, such as

SHAKE [59]. The function Sample() reads random values from a

random tape, converting the random bits to the required type, and

keeping a pointer to the next bits to be read.

Optimizations. We use an optimization from [47] that is now

standard in the MPCitH literature: P derives per-party seeds with a

binary tree construction, so that 𝑁 − 1 seeds can be communicated

to V with

⌈
log

2
𝑁
⌉
seeds. We use another optimization at a couple

points of the protocol. If 𝑥 is a public value, and the prover has

committed to shares of it, e.g., ℎ = 𝐻 (𝑥 (1) , . . . , 𝑥 (𝑁 ) ), the verifier
may recompute ℎ from 𝑥 and 𝑁 − 1 of the shares by recomputing

the missing share 𝑥 (𝑖
∗ )

as follows 𝑥 (𝑖
∗ ) = 𝑥 − ∑𝑁

𝑖≠𝑖∗ 𝑥
(𝑖 )
, since

by definition 𝑥 =
∑𝑁
𝑖=1 𝑥

(𝑖 )
. This saves the prover from having

to communicate the unopened party’s share. For example, in the

bundles we audit, we commit to 𝜏 sharings of 𝑣𝑘 : by revealing

𝑣𝑘 , the verifier can recompute the missing shares and check the

cPoP.KPG(attrs):
Phase 1: Commit to seeds and bundles
1: Sample a random salt: salt←$ {0, 1}2^
2: Sample 𝑣𝑘 for 𝑘 ∈ [𝑀 ] from the distribution 𝜒 as in FrodoKEM

3: for each parallel repetition 𝑒 ∈ [𝜏 ] do
4: Sample a root seed: seed𝑒 ←$ {0, 1}^

5: Derive seed
(1)
𝑒 , . . . , seed

(𝑁 )
𝑒 from seed𝑒 as leaves of a binary

tree

6: for each party 𝑖 ∈ [𝑁 ] do
7: Commit to seed: com

(𝑖 )
𝑒 ← Commit(salt, 𝑒, 𝑖, seed(𝑖 )𝑒 )

8: Expand tape: tape
(𝑖 )
𝑒 ← ExpandTape(salt, 𝑒, 𝑖, seed(𝑖 )𝑒 )

9: Compute shares: (𝑏 (𝑖 )
1,𝑒
, . . . , 𝑏

(𝑖 )
𝑀,𝑒
) ← Sample(tape(𝑖 )𝑒 )

10: for each 𝑘 ∈ [𝑀 ] do
11: Compute the offset: Δ𝑏𝑘,𝑒 ← 𝑣𝑘 −

∑𝑁
𝑖=1 𝑏

(𝑖 )
𝑘,𝑒

mod 𝑞

12: Update first party’s share: 𝑏
(1)
𝑘,𝑒
← 𝑏

(1)
𝑘,𝑒
+ Δ𝑏𝑘,𝑒 mod 𝑞

13: Set𝑚1 ← (com(𝑖 )𝑒 , (Δ𝑏𝑘,𝑒 )𝑘∈ [𝑀 ] )𝑖∈ [𝑁 ],𝑒∈ [𝜏 ]
Phase 2: Challenge a subset of the bundles to audit
1: Compute challenge hash: ℎ1 ← 𝐻1 (salt,𝑚1, attrs)
2: Compute𝐶 ← Expand(salt, ℎ1 ) where𝐶 ⊂ {1, . . . , 𝑀 }, |𝐶 | = 𝜎

Phase 3: Generate keypair, simulateMPC, commit to views, and open
the audited bundles
1: Compute (S, E) ← Arrange({𝑣1, . . . , 𝑣𝑀 },𝐶 )
2: Choose random seedA, derive A ∈ Z𝑛×𝑚𝑞 as in FrodoKEM

3: Compute public key: B← AS + E mod 𝑞

4: for each parallel repetition 𝑒 do
5: for each party 𝑖 do
6: Compute (S(𝑖 )𝑒 , E(𝑖 )𝑒 ) ← Arrange( (𝑏 (𝑖 )

𝑘,𝑒
)𝑘∈ [𝑀 ] ,𝐶 )

7: Compute B(𝑖 )𝑒 ← AS(𝑖 )𝑒 + E
(𝑖 )
𝑒 mod 𝑞

8: Open audited bundles: set 𝑋𝑒 ← {𝑏 (𝑖 )𝑘,𝑒
: 𝑘 ∉ 𝐶, 𝑖 ∈ [𝑁 ] }𝑒∈ [𝜏 ]

9: Set𝑚2 ← (B, (B(1)𝑒 , . . . ,B(𝑁 )𝑒 )𝑒∈ [𝜏 ] , (𝑋𝑒 )𝑒∈ [𝜏 ] )
Phase 4: Challenge the MPC simulation
1: Compute challenge hash: ℎ2 ← 𝐻2 (salt, ℎ1,𝑚2 )
2: Compute (𝑖1∗, . . . , 𝑖𝜏 ∗ ) ← Expand(salt, ℎ2 ) where 𝑖𝑒 ∗ ∈ [𝑁 ]

Step 5: Open the MPC views and output the key pair and proof
1: for each parallel repetition 𝑒 do
2: seeds𝑒 ← nodes needed to compute {seed(𝑖 )𝑒 , 𝑖 ≠ 𝑖𝑒

∗}
3: Output pk = (B, seedA ) , sk = (S, E) and the proof 𝜋 :

(ℎ1, ℎ2, salt, (seeds𝑒 , com(𝑖𝑒
∗ )

𝑒 , (Δ𝑏𝑘,𝑒 )𝑘∈ [𝑀 ] , )𝑒∈ [𝜏 ] , (𝑣𝑘 )𝑘∉𝐶 )

Figure 4: Combined proof and key generation scheme, prover
operations. Commit is a commitment scheme. See paragraph

“Helper functions” for description of functions Arrange and Sample,

and pseudorandom generators Expand and ExpandTape.

commitments. Since the 𝑣𝑘 are small values and the missing share

is from Z𝑞 , this reduces proof size.

Proof Size. The size of the proof 𝜋 output by Figure 4 is

6^ + 𝜏 · (2^ + ^
⌈
log

2
(𝑁 )

⌉
+ ℓ𝑞𝑀) + ℓ𝜒 (𝑀 − 𝜎) (1)

bits, where the term 6^ accounts for the salt and two challenges

(each 2^ bits long), 2^ is the size of the per-party commitment,

^
⌈
log

2
(𝑁 )

⌉
is the number of bits required to communicate the

seeds of the unopened parties in each repetition, ℓ𝑞 is

⌈
log

2
(𝑞)

⌉
,

and ℓ𝜒 is the number of bits required to represent a “small” value

(sampled from the distribution 𝜒). In Section 4.3.1 we explain how
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cPoP.Vf(pk, 𝜋, attrs):
1: Parse pk and 𝜋 , expand ℎ1 and ℎ2 as defined in Figure 4

2: Derive A ∈ Z𝑛×𝑚𝑞 from seedA
3: for each parallel repetition 𝑒 do
4: for each party 𝑖 ∈ [𝑁 ], 𝑖 ≠ 𝑖𝑒 ∗ do
5: Compute com

′(𝑖 )
𝑒 ← Commit(salt, 𝑒, 𝑖, seed(𝑖 )𝑒 )

6: Expand tape: tape
(𝑖 )
𝑒 ← ExpandTape(salt, 𝑒, 𝑖, seed(𝑖 )𝑒 )

7: Compute shares: (𝑏 (𝑖 )
1,𝑒
, . . . , 𝑏

(𝑖 )
𝑀,𝑒
) ← Sample(tape(𝑖 )𝑒 ) .

8: if 𝑖 = 1, for all 𝑘 ∈ [𝑀 ], update 𝑃1’s share:

𝑏
(1)
𝑘,𝑒
← 𝑏

(1)
𝑘,𝑒
+ Δ𝑏𝑘,𝑒 mod 𝑞

9: Compute (S(𝑖 )𝑒 , E(𝑖 )𝑒 ) ← Arrange( (𝑏 (𝑖 )
𝑘,𝑒
)𝑘∈ [𝑀 ] ,𝐶 )

10: Compute B(𝑖 )𝑒 ← AS(𝑖 )𝑒 + E
(𝑖 )
𝑒 mod 𝑞

11: Compute missing shares B(𝑖
∗ )

𝑗
← B − ∑𝑁

𝑖≠𝑖∗ B
(𝑖 )
𝑗

mod 𝑞

12: for 𝑘 ∉ 𝐶 do ⊲ Audit opened bundles

13: Abort if 𝑣𝑘 does not meet the range criteria given by 𝜒

14: for each parallel repetition 𝑒 do
15: Recompute missing party’s share:

𝑏
(𝑖𝑒 ∗ )
𝑘,𝑒

← 𝑣𝑘 −
𝑁∑︁

𝑖∈ [𝑁 ]\𝑖𝑒 ∗
𝑏
(𝑖 )
𝑘,𝑗

mod 𝑞

16: if 𝑖𝑒 ∗ = 1, 𝑏
(𝑖𝑒 ∗ )
𝑘,𝑒

← 𝑏
(𝑖𝑒 ∗ )
𝑘,𝑒

+ Δ𝑏𝑘,𝑒 mod 𝑞

17: Reconstruct 𝑋𝑒 from 𝑏
(𝑖 )
𝑘,𝑒

as in Figure 4

18: Compute𝑚1 and𝑚2 be as defined in Figure 4

19: Compute ℎ′
1
← 𝐻1 (salt,𝑚1, attrs) and ℎ′

2
← 𝐻2 (salt, ℎ′

1
,𝑚2 )

20: Output accept if ℎ′
1
= ℎ1 and ℎ

′
2
= ℎ2, else output reject

Figure 5: Combined proof and key generation scheme, veri-
fier operations.

to choose the parameters (𝑁, 𝜏,𝑀, 𝜎), and in Section 6 we give sizes

and benchmarks from our implementation.

Note that the FrodoKEM secret key could be compactly repre-

sented by seedSE (though the FrodoKEM spec does not explicitly

represent the key that way). For our cPoP, the secret key cannot

directly be derived from a seed alone; one would instead have to de-

rive all (𝑣1, . . . , 𝑣𝑀 ) from a seed seed
′
SE, and also store𝐶 (to indicate

which subset of the 𝑣𝑘 to use) and then call Arrange to reconstruct

(S, E).

4.3 Unique Secret Keys and Parameter Selection
We now explain how to choose parameters for our cPoP to provide

^-bit security. There are two places where a prover can cheat: by

choosing values for S and E that do not have the correct distribution;

or in the MPCitH executions. The first part of parameter selection

is how to choose the number of bundles to audit in the first step of

the protocol, and is new to our work. The second part addresses the

choice of the MPCitH parameters, which is similar to many other

MPCitH proof protocols in the literature.

First note that with the cut-and-choose mechanism used to en-

sure that values are small, a malicious prover can create a proof

where one of the values is not small with high probability, unless𝑀

is exponential. For the practicality of our protocol, we want𝑀 to be

as small as possible. In this section we will show that it is sufficient

for the prover to convince the verifier thatmost of the secret values
are small, and that this is possible for practical choices of𝑀 .

Suppose Bob is honest and has generated pk𝐵 = (B, seedA), but
Alice is malicious and wants to create a PoP for pk𝐵 . Therefore

Alice aims to demonstrate knowledge of a pair (S′, E′) satisfying
the relation B = AS′ + E′. If there are no size restrictions on the

entries of S′ or E′, then it is easy to find S′ and E′ that are consistent
with B. If Alice’s malicious proof verifies, the verifier is convinced

that most of the values in (S′, E′) are small. But Lemma 4 shows

that, since the honest secret key Bob generated has small (S, E),
then it is unique (unconditionally, with overwhelming probability).

Therefore, if Alice’s proof verifies, we must have (S′, E′) = (S, E)
and this implies that (S′, E′) are in fact all small values.

The following lemma bounds the probability that, for a well-

formed FrodoKEM key, there exists a second solution (S′, E′) where
every entry is small, or at most 𝛾 entries total are not small.

Lemma 4 (Uniqeness of small FrodoKEM solutions). Let
𝑞 = 2

𝐷 , and let 𝐷,𝑛, 𝑛 be positive integers. Let A←$ Z𝑛×𝑛𝑞 be selected
uniformly at random, and let S, E←$ 𝜒𝑛×𝑛𝑞 have each entry be gener-
ated independently according to the FrodoKEM error distribution 𝜒𝑞 .
Let 𝛽 be the maximum value in the support of 𝜒𝑞 . Let B = AS + E.
Then the probability that there are values S′, E′ ∈ Z𝑛×𝑛𝑞 such that
each entry of (S′, E′) has absolute value at most 𝛽 , that B = AS′ + E′,
and that (S′, E′) ≠ (S, E), is at most

𝑛(1 − 2−𝑛) (2𝛽 + 1)𝑛 ·
𝐷−1∑︁
𝑡=0

(⌈
2𝛽 + 1
2
𝑡

⌉
/𝑞
)𝑛

. (2)

Furthermore, if the size requirement is relaxed for at most 𝛾 entries of
S′ and E′, then this probability is at most

𝑛(1 − 2−𝑛) (2𝛽 + 1)𝑛−𝛾 𝑞𝛾−𝑛 ·
𝐷−1∑︁
𝑡=0

⌈
2𝛽 + 1
2
𝑡

⌉𝑛
(3)

Proof. Consider the first column of S, the first row ofA, the first
entry of the first row of B, and the first entry of the first column of E,
denoted s, a, 𝑏, and 𝑒 respectively. Let s′ ∈ Z𝑛𝑞 with small coefficients

(absolute value less than 𝛽). Let 𝑒′ = 𝑏 − ⟨a, s′⟩. Then s′ is a valid
first column for a solution matrix S of the FrodoKEM relation if

|𝑒′ | is less than or equal to 𝛽 . We can write 𝑒′ = ⟨a, s⟩ + 𝑒 , where
s = s − s′. For every s ≠ 0 (and hence s′ ≠ s), we will calculate
the probability that |𝑒′ | is less than or equal to 𝛽 , and then bound

the probability that there exists a second solution s′ for the first
column of the FrodoKEM relation using a union bound.

Note that if there is at least one odd entry 𝑠 𝑗 in s, then ⟨a, s⟩
is uniformly distributed on Z𝑞 , since gcd(𝑠 𝑗 , 𝑞) = 1, and so 𝑎 𝑗 · 𝑠 𝑗
is uniformly distributed. Further, this means that ⟨a, s⟩ + 𝑒 is also
uniformly distributed. Thus Pr[|𝑒′ | ≤ 𝛽] = 2𝛽+1

𝑞 .

If there are no odd entries in s, then this probability can be

higher. This occurs for a fraction of possible values of size 2
−𝑛

.

Then, if there is at least one entry that is not a multiple of 4,

⟨a, s⟩ is distributed uniformly over even values in Z𝑞 . This gives

us that Pr[|𝑒′ | ≤ 𝛽] ≤ 2 ·
⌈
2𝛽+1
2

⌉
/𝑞. Continuing in this way for

𝑡 ∈ {0, ..., 𝐷 − 1}, we get that for a proportion of possible values for

s of size 2−𝑡𝑛 (1 − 2−𝑛), we have Pr[|𝑒′ | ≤ 𝛽] ≤ 2
𝑡 ·

⌈
2𝛽+1
2
𝑡

⌉
/𝑞.

The probability that the above relation holds for all 𝑛 rows of the

matrix A (using the corresponding other entries of the first column

of E) is then at most

(
2
𝑡 ·

⌈
2𝛽+1
2
𝑡

⌉
/𝑞
)𝑛
. Performing a union bound
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over all (2𝛽 + 1)𝑛 possible values of s gives the following upper

bound on the probability that there exists a second solution s′ for
the first column:

𝐷−1∑︁
𝑡=0

2
−𝑡𝑛 (1 − 2−𝑛) (2𝛽 + 1)𝑛

(
2
𝑡 ·

⌈
2𝛽 + 1
2
𝑡

⌉
/𝑞
)𝑛

= (1 − 2−𝑛) (2𝛽 + 1)𝑛 ·
𝐷−1∑︁
𝑡=0

(⌈
2𝛽 + 1
2
𝑡

⌉
/𝑞
)𝑛

.

Repeating this argument for all 𝑛 columns of S (and corresponding

columns of E) gives an upper bound of𝑛 times the probability above,

which is Equation (2).

Now we consider what happens when we relax the size require-

ment for some values of s′ and 𝑒′. Specifically, if 𝛾1 entries of the
first column of E do not need to meet the size constraint and 𝛾2
entries of s′ do not need to meet the size constraint, then the above

union bound instead becomes

(1 − 2−𝑛) (2𝛽 + 1)𝑛−𝛾2 𝑞𝛾2 ·
𝐷−1∑︁
𝑡=0

2
−𝑡𝑛

(
2
𝑡

⌈
2𝛽 + 1
2
𝑡

⌉
/𝑞
)𝑛−𝛾1

= (1 − 2−𝑛) (2𝛽 + 1)𝑛−𝛾2 𝑞𝛾1+𝛾2−𝑛 ·
𝐷−1∑︁
𝑡=0

2
−𝑡𝛾1

⌈
2𝛽 + 1
2
𝑡

⌉𝑛−𝛾1
.

Let 𝛾 = 𝛾1 +𝛾2. The choices of 𝛾1 and 𝛾2 maximizing this probability

with a given 𝛾 will have 𝛾1 = 0 and 𝛾2 = 𝛾 . Again considering

this result over all 𝑛 columns (taking a coarse upper bound by

multiplying by 𝑛, even though not all of the columns can have 𝛾

relaxed values simultaneously) of 𝑆 gives us an upper bound of

𝑛(1 − 2−𝑛) (2𝛽 + 1)𝑛−𝛾 𝑞𝛾−𝑛 ·
𝐷−1∑︁
𝑡=0

⌈
2𝛽 + 1
2
𝑡

⌉𝑛
,

which is Equation (3). □

4.3.1 Parameter Selection. We explain how we use Lemma 4 with

an example, consider parameters for Frodo640: 𝑛 = 640, 𝑛 = 8,

𝛽 = 12, and 𝑞 = 2
15
. We choose 𝛾 to be the largest integer so that, as

per the relaxed bound in Lemma 4, the probability of a non-unique

solution is less than 2
−128

. The result is 𝛾 = 340. Hence we can

relax up to 340 size constraints in an alternate solution, and the

probability of the FrodoKEM solution S being non-unique is still

less than 2
−128

. We note that this probability holds unconditionally.

Consequently, we choose𝑀 in the FrodoKEM cPoP protocol so

that the probability that 341 or more invalid bundles all fall in the

𝜎 unaudited values is less than 2
−128

. If 𝛾 is the number of invalid

bundles, then the probability of all 𝛾 invalid bundles being in the 𝜎

unaudited bundles is (
𝑀 − 𝛾
𝑀 − 𝜎

)/ (
𝑀

𝑀 − 𝜎

)
. (4)

For Frodo640, where 𝜎 = 10240, the smallest value of𝑀 for which

Equation (4) is smaller than 2
−128

, with𝛾 = 341, is𝑀 = 10240+2993.
We give other values of𝑀 and𝛾 for FrodoKEM and Kyber in Table 2

(in Appendix D).

The second group of parameters are chosen to prevent cheating

in the MPCitH executions. Since the 𝜏 executions (each with 𝑁

parties) are independent, the probability of successful cheating is

1

𝑁 𝜏 . For ^-bit security, we choose 𝑁 and 𝜏 so this is at most 2
−^

.

4.4 Security Analysis
We prove two lemmas about the protocol of Section 4.2, that roughly

correspond to the two properties required for a secure cPoP scheme.

The first is honest verifier zero-knowledge, which corresponds

to the ZK property of cPoPs (Definition 3). For this lemma we re-

quire that ExpandTape is a secure pseudorandom generator (PRG)

as defined in, e.g., [15, Definition 3.1], implemented with a ran-

dom oracle. As our implementation uses SHAKE [59] to implement

ExpandTape this is a standard assumption. For the seed tree con-

struction used to derive the per-party seeds, we (informally) must

assume that after revealing 𝑁 − 1 of 𝑁 seeds, the remaining seed

is hidden to a computationally bounded adversary. This is shown

to hold when the tree is constructed with a random oracle in [21,

Section 6.3], and again our implementation uses SHAKE.

Lemma 5. The non-interactive cPoP protocol of Section 4.2 is zero-
knowledge in the random oracle model.

Proof. (Sketch)Wefirst recall the real distribution against which

Sim’s output must be indistinguishable (from Exp
ZK

cPoP
in Figure 3).

Let 𝑆
pk

be the set of all transcripts associated with a fixed public

key pk:

𝑆
pk

= {(𝜋, attrs) : Vf (pk, 𝜋, attrs) = 1} .
Then we will require that {Sim(pk, attrs)}attrs ≡𝑐 𝑆pk, where attrs
are drawn from the same distribution in both cases.

The simulator. To describe the algorithm Sim we start by assum-

ing it has both (pk, sk) as input and runs the real protocol from

Figure 4. This initial version is then modified in a series of hy-

brid arguments, each change maintaining the indistinguishability

of transcripts, until we arrive at the final version of Sim that no

longer uses sk. The algorithm A is any algorithm that attempts to

distinguish real and simulated transcripts in the ROM.

Game 1. Sim1 chooses a random first challenge𝐶 before starting

to generate the transcript, then chooses𝑀 − 𝜎 values 𝑣𝑘 honestly

from 𝜒 . Sim1 indexes the bundles so that the values in sk are not

audited by 𝐶: sk = Arrange((𝑣𝑘 )𝑘∈[𝑀 ] ,𝐶). Sim1 then follows the

protocol, but programs 𝐻1 to output 𝐶 for𝑚1. The distribution of

Sim1’s output and the real distribution are identical: all values in

the simulated transcript are computed honestly, for all 𝐶 .

Game 2. Sim2 replaces seed
(𝑖∗ )
𝑒 with a uniformly random value.

This is indistinguishable assuming the tree construction is hiding.

Intuitively, since the seed tree is a hash tree, the only way to distin-

guish games 1 and 2 is to query for seed
(𝑖∗ )
𝑒 which happens with

negligible probability when the number of hash queries is bounded.

Game 3. Sim3 replaces tape
(𝑖∗ )
𝑒 with a uniformly random value.

This is indistinguishable assuming ExpandTape is a secure PRG.

Since we model ExpandTape as a random oracle that maps (salt, 𝑒,
seed

(𝑖∗ )
𝑒 ) to tape

(𝑖∗ )
𝑒 , again the intuition is that games 2 and 3 are

indistinguishable provided seed
(𝑖∗ )
𝑒 is not queried.

Game 4. Sim4 replaces the commitments com
(𝑖∗ )
𝑒 , with random

values, i.e., without making a query to Commit. Sim4 aborts if

A queries 𝑥 such that Commit(𝑥) was output. Since Commit is

a random oracle, finding a preimage of a random value happens
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with negligible probability, therefore Sim aborts with negligible

probability and the output of Sim4 is indistinguishable from Sim3.

Game 5. Sim5 no longer uses sk. Sim5 chooses a random second

challenge (𝑖𝑒∗)𝑒∈[𝜏 ] in advance, and programs 𝐻2 to output it for

𝑚2. Sim5 chooses random Δ𝑏𝑘,𝑒 for 𝑘 ∉ 𝐶 (the unaudited values).

Sim5 computes shares of parties 𝑃𝑖 ≠ 𝑃𝑖∗ and solves for B(𝑖
∗ )

𝑒 =

B −∑𝑖≠𝑖∗ B(𝑖 )𝑒 . This amounts to cheating in the unopened party’s

broadcast to make the MPC compute the correct public key. Here

the distributions are identical: since the unopened party’s shares

were already uniformly random (because the tape
(𝑖∗ )
𝑒 is uniform as

of Game 3), Δ𝑏𝑘,𝑒 was uniformly random. The shares of the opened

parties are computed honestly, and B(𝑖
∗ )

𝑒 is the same in both real

and simulated transcripts.

Conclusion. Since Sim5 no longer uses sk and its output is indis-

tinguishable from the set of real transcripts for any pk, the lemma

is proven. □

Straight-line extractability. Next we prove that proofs created
by Section 4.2 are straight-line extractable in the ROM, meaning

that we can extract the secret key from a successful prover. In the

context of a cPoP, the adversary may create many proofs that verify,

however, if they create one for an existing public key, our proof

of cPoP security (Theorem 8) will use this property to recover the

secret key, reducing cPoP-UF to key recovery (which is a search

LWE problem for FrodoKEM).

Our proof is loosely based on the UF-KOA security proof for the

Rainier signature scheme [31], and is in parts identical. (As Rainier

is based on the Banquet scheme [7], its security analysis is in turn

similar to Banquet’s.) Rainier is also based on a 5-round MPCitH

proof, and the KOA security analysis implicitly defines an extractor

in the ROM: when the adversary creates a forgery (a valid proof for

a challenge public key), the proof extracts the secret key from the

query history, in order to reduce KOA security to key recovery. This

proof strategy is common for the analysis of MPCitH-based proofs,

first described in [47, §3.1]. The basic idea is that because we’ve

chosen our parameters correctly, if 𝜋 verifies, then at least one of

the 𝜏 parallel repetitions was executed honestly. Let index 𝑒 be one

such repetition. From the query history, the extractor algorithm Ext

can find the preimage of com
(𝑖∗ )
𝑒 , which contains seed

(𝑖∗ )
𝑒 . Then

Ext has the shares of all 𝑁 parties and can recover (S, E).
We now define straight-line extractability for cPoPs. Basically

this says that for any proof and key pair (pk, 𝜋, attrs) output by
A such that cPoP.Vf(pk, 𝜋, attrs) = 1, there exists an extractor

algorithm ExtCommit,𝐻1,𝐻2
(pk, 𝜋, attrs) that recovers sk such that

𝑅(pk, sk) = 1, where 𝑅 relates public and secret keys. Ext simulates

the random oracles used by A and fails with bounded probability.

Definition 6. Let 𝑅 be the relation that relates secret keys and

public keys in a KEM. A cPoP is straight-line extractable in the

random oracle model with knowledge error Y
sle

if there exists an

efficient extractor Ext such that for all adversaries A, we have the

following:

Y
sle
≤ Pr

𝑅(pk, sk′) ≠ 1

������ (pk, 𝜋, attrs) ← A
𝐻 (1^ )

cPoP.Vf(pk, attrs, 𝜋) ⇒ 1

sk
′ ← Ext𝐻 (pk, 𝜋, attrs)

 .

𝐻c (𝑞c = (salt, 𝑒, 𝑖, seed(𝑖 )𝑒 ))
1 : 𝑥 ←$ {0, 1}2^

2 : if 𝑥 ∈ Digests then abort

3 : 𝑥 → Digests

4 : (𝑞c, 𝑥 ) → Qc
5 : return 𝑥

𝐻2 (𝑞2 = (salt, ℎ1,𝑚2))
1 : ℎ1 → Digests

2 : 𝑥 ←$ {0, 1}2^

3 : if 𝑥 ∈ Digests then abort

4 : 𝑥 → Digests

5 : (𝑞2, 𝑥 ) → Q2
6 : return 𝑥

Figure 6: Oracles 𝐻c and 𝐻2 for extraction algorithm Ext in
proof of Lemma 7.

In this experiment𝐻 is a random oracle used byA that is simulated

by Ext.

Lemma 7. Let Commit, 𝐻1, and 𝐻2 be modeled as random or-
acles, Expand be modeled as a random function, and let cPoP be
the cPoP scheme given in Figures 4 and 5 with parameters (𝑁, 𝜏). Let
ACommit,𝐻1,𝐻2 be an adversary that makes a total of𝑄 random oracle
queries. Then cPoP is straight-line extractable with

Y
sle
≤ (𝜏𝑁 + 1)𝑄

2

2
2^

+ 1/2^

when parameters are chosen as described in Section 4.3.1.

Proof. We give an algorithm Ext which simulates the random

oracles used by adversaryA to compute a secret key corresponding

to any pk associated to a valid proof 𝜋 output by A. We note that

for every query made by A, Ext simply samples a random value

and outputs it – none of the outputs depend on other queries or

outputs, i.e., there is no programming done by Ext, it only records

information from the queries. Since Ext simulates 𝐻c (in this proof

we use 𝐻c as shorthand for Commit), 𝐻1, and 𝐻2 perfectly, we can

focus on analyzing the probability that extraction fails.

Algorithm Ext simulates the random oracles 𝐻c, 𝐻1, and 𝐻2

and maintains query lists Qc, Q1, and Q2. Ext also uses tables T
sh

and T
key

to store shares of the parties, and extracted secret keys

recovered from A’s RO queries. Ext also keep track of the outputs

of all three random oracles with the set Digests. Our analysis will

ignore calls to Expand, since they are only used to expand outputs

from 𝐻1 and 𝐻2, and when Expand is a random function this is

equivalent to increasing the output lengths of 𝐻1 and 𝐻2.

Ext answers random oracle queries from A in the following

way. When defining Ext’s RO implementations (given in Figures 6

and 7), without loss of generality we only consider queries that are

correctly formed, and ignore duplicate queries.

• 𝐻c: When A queries the commitment random oracle, Ext

stores the query to keep track of the seed corresponding to

the commitment. See Figure 6.

• 𝐻1: When A queries with the commitments and Δ-values
for the secret key, Ext checks whether the commitments

were output by its simulation of𝐻c for a specific party/repetition.

If so, Ext reconstructs the shares for that party (by follow-

ing the steps used by the honest prover given in Figure 4). If

Ext reconstructs the shares of all parties for any repetition,

then it has recovered the secret key that A used in that

execution. See Figure 7.
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𝐻1 (𝑞1 = ((com(𝑖 )𝑒 , ℎ
(𝑖 )
𝑒 , (Δ𝑏𝑘,𝑒 )𝑘∈[𝑀 ] )𝑖∈[𝑁 ],𝑒∈[𝜏 ] ))

1 : 𝑥 ←$ {0, 1}2^

2 : if 𝑥 ∈ Digests then abort

3 : 𝑥 → Digests

4 : (𝑞1, 𝑥 ) → Q1
5 : for 𝑒 ∈ [𝜏 ], 𝑖 ∈ [𝑁 ] do

6 : com
(𝑖 )
𝑒 → Digests

7 : 𝐶 = Expand(𝑥 )
// If the opening of any of the com

(𝑖 )
𝑒 is known,

// compute and record the associated shares

8 : if (salt, 𝑒, 𝑖, seed(𝑖 )𝑒 , com
(𝑖 )
𝑒 ) ∈ Qc then

9 : Compute (𝑏 (𝑖 )
𝑘,𝑒
) ← Expand(salt, 𝑒, 𝑖, seed(𝑖 )𝑒 )

10 : if 𝑖 = 1 then adjust shares with Δ𝑏𝑘,𝑒

11 : Compute (S(𝑖 )𝑒 , E(𝑖 )𝑒 ) ← Arrange( (𝑏 (𝑖 )
𝑘,𝑒
)𝑘∈ [𝑀 ] ,𝐶 )

12 : Store (S(𝑖 )𝑒 , E(𝑖 )𝑒 ) in table T
sh
[𝑞1, 𝑒, 𝑖 ]

// If we have all shares, store the corresponding key

13 : foreach 𝑒 ∈ [𝜏 ] do
14 : if T

sh
[𝑞1, 𝑒, 𝑖 ] ≠ ∅ ∀𝑖 ∈ [𝑁 ] then

15 : T
key
[𝑞1, 𝑒 ] ←

(∑︁
S(𝑖 )𝑒 ,

∑︁
E(𝑖 )𝑒

)
16 : return 𝑥

Figure 7: Oracle 𝐻1 for extraction algorithm Ext in proof of
Lemma 7.

• 𝐻2: No extraction takes place during this random oracle

simulation, but we do some bookkeeping to quantify the

probability of collisions. See Figure 6.

AfterA completes and outputs (pk, 𝜋, attrs), Ext checks the T
key

table for any entry sk𝑒 such that 𝑅(𝑠𝑘𝑒 , pk) = 1. If a match is found,

Ext outputs sk𝑒 as the secret key corresponding to pk. Otherwise,

Ext outputs ⊥.

Extraction Failure Probability. We now analyze the probability

that A wins the straight-line extraction experiment. Assuming

A outputs (pk, 𝜋, attrs) such cPoP.Vf (pk, 𝜋, attrs) = 1, this can

happen in one of two ways: Ext can abort, or fail to output sk. By

the law of total probability:

Pr[A wins] = Pr[A wins ∧ Ext aborts]
+ Pr[A wins ∧ Ext outputs ⊥]
≤ Pr[Ext aborts] + Pr[A wins | Ext outputs ⊥] (5)

Noting also that Ext is defined to output ⊥ if it extracts sk
′ ≠ ⊥

such that 𝑅(pk, sk′) ≠ 1.

The probability that Ext aborts is the probability of a collision

among the hash functions. Let𝑄com,𝑄1, and𝑄2 denote the number

of queries made by A to 𝐻c, 𝐻1, and 𝐻2, respectively. Every time

Ext samples a random 𝑥 to output, it might abort. More precisely,

Pr[Ext aborts] ≤ (𝑄com +𝑄1 +𝑄2) ·
max |Digests|

2
2^

= (𝑄com +𝑄1 +𝑄2) ·
𝑄com + (𝜏𝑁 + 1)𝑄1 + 2𝑄2

2
2^

≤ (𝜏𝑁 + 1) (𝑄com +𝑄1 +𝑄2)2
2
2^

. (6)

Now for the main quantity: the probability that A wins the

experiment given that Ext fails, i.e., Ext outputs⊥ since nomatching

sk was found in T
key

. It can be checked that Ext always succeeds

when A generates 𝜋 honestly, therefore for Ext to fail A must

cheat. We divide the two ways A can cheat, either by cheating in

the first part of the protocol, the “setup phase” (i.e., Phase 1-2 of

Figure 4) during which the prover commits to𝑀 bundles, and the

verifier audits𝑀 − 𝜎 of them, or the second phase (i.e., Phase 3-4

of Figure 4) when the prover simulates the MPC and the verifier

audits 𝑁 − 1 of 𝑁 parties.

Cheating in the setup phase. For any query 𝑞1 ∈ Q1, and its

corresponding answer ℎ1 = 𝐶 ⊂ [𝑀], |𝐶 | = 𝜎 , let𝐺1 (𝑞1, ℎ1) be the
set of indices 𝑒 ∈ [𝜏] of “good executions” where both T

key
[𝑞1, 𝑒] =

(S, E) is non-empty and and it holds that all audited values are

small, i.e.,

∀ 𝑘 ∈ 𝐶, 𝑣𝑘 meets the range criteria given by 𝜒 (7)

If there does not exist such a 𝑞1, let 𝐺1 (𝑞1, ℎ1) = ∅.
For any such good execution 𝑒 ∈ 𝐺1 (𝑞1, ℎ1), since Ext outputs

⊥ but A wins, there must be more than 𝛾 values 𝑣𝑘 , 𝑘 ∉ 𝐶 , i.e., not

audited by the verifier, that do not satisfy the range condition given

by 𝜒 . As analyzed in Equation (4) of Section 4.3, this happens with

probability not more than

𝑝1 =

(
𝑀 − 𝛾
𝑀 − 𝜎

)/ (
𝑀

𝑀 − 𝜎

)
, (8)

given that ℎ1 is distributed uniformly at random (which holds as-

suming 𝐻1 and Expand are random functions). As the response ℎ1
is uniform, and there is one 𝐶 per query (i.e., one set of𝑀 bundles

per proof), all 𝑒 ∈ [𝜏] are in 𝐺1 (𝑞1, ℎ1) with probability 𝑝1.

Cheating in the second phase. Each second round query 𝑞2 =

(salt, ℎ1,𝑚2) that A makes to 𝐻2 can only be used in a valid proof

if there exists a corresponding query (𝑞1, ℎ1) ∈ Q1. Then for each

repetition 𝑒 ∈ [𝜏] \𝐺1 (𝑞1, ℎ1), either verification failed, in which

caseA couldn’t have won, or the verification passed, despite Equa-

tion (7) not being satisfied. This implies that exactly one of the

parties must have cheated. At least one cheater is required for veri-

fication to pass, but as 𝑁 − 1 parties are opened, verification would

fail if more than one party cheated.

Since ℎ2 ∈ [𝑁 ]𝜏 is distributed uniformly at random, the proba-

bility that this happens for all repetitions 𝑒 is 𝑝2 = 1/𝑁𝜏 .
Finally, conditioning on Ext outputting ⊥

Pr[A wins | Ext outputs ⊥] ≤ 𝑝1 + 𝑝2 (9)

where 𝑝1 and 𝑝2 are as defined above.
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Conclusion. Bringing Equation (5), Equation (6) and Equation (9)

together, we obtain the following.

Pr[A wins] ≤ (𝜏𝑁 + 1) (𝑄com +𝑄1 +𝑄2)2
2
2^

+ 𝑝1 + 𝑝2

Setting 𝑄 = 𝑄com + 𝑄1 + 𝑄2, and setting parameters such that

𝑝1 + 𝑝2 ≤ 2
−^

gives the required bound. □

Note that when sk is not unique for a given pk the extractor of

Lemma 7 might not output the same sk used byA. However, when

pk is honestly generated, the analysis of Section 4.3 ensures that sk

is unique and Lemma 7 ensures that Ext will extract it.

We now come to the main theorem of this section, that uses the

previous two lemmas to prove that our new PoP is secure. We also

require that the KEM be KEM-SIM secure; we define this property

in Appendix B and prove that it holds for KEMs constructed with

the FO transform (including FrodoKEM and Kyber) in Theorem 10.

We say that the key generation function of a KEM is a one-way

function (as defined in [41, Section 2.2]) if is it hard to recover sk

from pk, such that 𝑅(sk, pk) = 1. Note that IND-CPA security of

the KEM implies one-wayness of the key generation function.

Theorem 8. If KEM.KeyGen is a one-way function, and KEM is
KEM-SIM secure, then the cPoP construction of Section 4.2 is a secure
cPoP in the random oracle model, when KEM.Decaps is the auxiliary
secret key usage algorithm.

Proof. The cPoP security definition Definition 2 has three parts:

zero-knowledge, correctness, and unforgeability.

The ZK property (Definition 3) follows immediately from our ZK

lemma, when using the simulator in Lemma 5 in Exp
ZK

cPoP
(Figure 3),

A’s distinguishing advantage is negligible, bounded by Y
ZK
. Note

that in combined key generation and PoP schemes, A gets only

one proof per key pair.

The correctness property is immediate if, in the cPoP proof, P

samples (𝑣1, . . . , 𝑣𝑀 ) using the same procedure as in KEM.KeyGen,

which is the case for our construction in Figure 4.

Now for the UF property (Definition 2). LetA be a cPoP attacker

in the security experiment Exp
UF

cPoP,Aux
given in Figure 2. We con-

struct B, an algorithm that uses A as a subroutine in the ROM

to invert KEM.KeyGen. Therefore B must implement the random

oracles 𝐻1, 𝐻2, and Commit for A. Algorithm B is initialized with

a public key pk output by KEM.KeyGen, and must output sk such

that 𝑅(pk, sk) = 1. Algorithm A is initialized with nothing, and

starts by outputting attrs.

We describe a sequence of games, where B starts by implement-

ing Exp
UF

cPoP,Aux
(A) as given in Figure 2 (this is Game 0), then in

the last game B inverts KEM.KeyGen if A succeeds.

In Game 1, B replaces calls to Aux, which are KEM.Decaps

queries, with simulated Decaps queries, using the simulator given

by KEM-SIM security of KEM. Thus G1 − G0 ≤ YKEM-SIM
.

In Game 2,B no longer computes (pk, sk, 𝜋) ← cPoP.KPG(attrs);
instead B computes (pk, sk) ← KEM.KeyGen(), then uses the ZK

Sim(pk, attrs) from Lemma 5 to simulate 𝜋 . As pk is identically

distributed in cPoP and KEM.KeyGen, this part of the change is

identical in both games. The proof 𝜋 is indistinguishable except

with probability Y
ZK
.

In Game 3, B no longer calls KEM.KeyGen in order to generate

(pk, sk). As of Game 2, only pk is needed, and B gets a challenge

pk in the OWF security game for KEM.KeyGen.

Now suppose A wins in Game 3, i.e., outputs (𝜋 ′, attrs′) such
that cPoP.Vf(pk, 𝜋 ′, attrs′) = 1. B uses the straight-line extractor

Ext of Lemma 7 to extract sk
′
fromA such that 𝑅(pk, sk′) = 1, and

outputs sk
′
in the OWF security game for KEM.KeyGen. Therefore,

when A wins Exp
UF

cPoP,Aux
, B inverts KEM.KeyGen.

Conclusion.We have shown that the success probability for all

adversaries A against the cPoP scheme is bounded by

2Y
ZK
+ 𝑞Y

KEM-SIM
+ Y

OW-KeyGen
+ Y

sle
,

where 𝑞 is the number of Aux queries made by A. The quantity

Y
ZK

was shown to be negligible in Lemma 5, Y
KEM-SIM

is given in

Theorem 10 for a class of KEMs constructed with the FO trans-

form (including FrodoKEM and Kyber), and Y
sle

is given for our

construction in Lemma 7. □

Theorem 8 shows that the KEM does not undermine the security

of the cPoP. In Appendix Cwe consider the other direction and show

that adding the cPoP does not undermine security of the KEM. We

show IND-CCA and KEM-SIM security are preserved whenKeyGen

is replaced with the combined key and proof generation function

and the proof is output with the public key. Security largely follows

from the zero-knowledge property of the cPoP.

4.4.1 Resistance to quantum attacks. In the above analysis, we have
assumed a classical attacker. A proof in the quantum random or-

acle model (QROM) would provide additional assurance against

quantum attacks. Recent work [34] gives a way to prove straight

line (or online) extractability of commit-and-open NIZK proofs in

the QROM. Since our PoP is a commit-and-open protocol, and our

extraction algorithm is simply reading the RO query histories, the

techniques seem directly applicable to prove a QROM analog of

Lemma 7. Our ZK result (Lemma 5), relies crucially on program-

ming the random oracle so that Sim can know the challenge in

advance. This was considered in [32, 33] in the context of signa-

tures schemes constructed from 3- and 5-round ID schemes using

the Fiat–Shamir transform. Since our combined generation and ver-

ification construction is not based on an ID scheme, these generic

results cannot be immediately applied, however they appear to be

the closest in the the QROM literature.

5 APPLICATION TO KYBER
Now we consider proof of possession via verifiable generation

for Kyber instead of FrodoKEM. Kyber’s structure is similar to

FrodoKEM, but Kyber is based on module LWE instead of plain

LWE, so we need a new version of Lemma 4 to choose parameters.

Lemma 9 (Uniqeness of small Kyber solutions). Let 𝑅𝑞 =

Z𝑞 [𝑋 ]/(𝑋𝑛 + 1), where 𝑋𝑛 + 1 is the 2𝑛-th cyclotomic polynomial
and 𝑞 is prime. Let A ∈ 𝑅ℓ×ℓ𝑞 be selected uniformly at random, and let
s ∈ 𝑅ℓ𝑞 and e ∈ 𝑅ℓ𝑞 be sampled from a centered binomial distribution as
in the Kyber specification, so that the absolute values of the coefficients
of the polynomials in s and e are at most 𝛽 . Let b = As + e. Then
the probability that there are values s′, e′ ∈ 𝑅ℓ𝑞 , with coefficients
whose absolute values are at most 𝛽 such that b = As′ + e′ and
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(s′, e′) ≠ (s, e) is at most

(2𝛽 + 1)ℓ𝑛
(
2𝛽 + 1
𝑞

)ℓ𝑛
.

Furthermore, if the size requirement is relaxed for some 𝛾 coefficients
of s′ and e′, then the probability is

(2𝛽 + 1)ℓ𝑛
(
2𝛽 + 1
𝑞

)ℓ𝑛−𝛾
.

Proof. This proof proceeds similarly to that of Lemma 4, al-

though because 𝑞 is prime, the situation is somewhat simpler. First,

note that because𝑋𝑛 +1 is a cyclotomic polynomial, it is irreducible,

and hence, noting that 𝑞 is prime, 𝑅𝑞 is a field.

Let s′ ∈ 𝑅ℓ𝑞 with small coefficients and e′ = b − As′. Then s′ is a
valid solution only if e′ also has all small coefficients. We can write

e′ = As + e, where s = s − s′. For every s ≠ 0 (and hence s′ ≠ s),
we will calculate the probability that e′ has small coefficients.

Note that since 𝑅𝑞 is a field, any given non-zero polynomial 𝑝 has

an inverse, and hence multiplication by any fixed 𝑝 polynomial is a

bijection from 𝑅𝑞 to itself. Therefore multiplying 𝑝 by a uniformly

random polynomial yields a uniformly random polynomial. Since

summing uniformly random polynomials yields a uniformly ran-

dom polynomial, we can conclude that As is a vector of uniformly

random polynomials, and so is e′ = As + e.
The probability that every coefficient of e′ is small is then

(
2𝛽+1
𝑞

)ℓ𝑛
.

Performing a union bound over all (2𝛽 + 1)ℓ𝑛 possible s gives a

probability of (2𝛽 + 1)ℓ𝑛
(
2𝛽+1
𝑞

)ℓ𝑛
that there is another solution s′.

If we relax the size constraint of 𝛾1 coefficients in s′ and 𝛾2 coef-

ficients in e′, then the probability is (2𝛽 + 1)ℓ𝑛−𝛾1𝑞𝑘1
(
2𝛽+1
𝑞

)ℓ𝑛−𝛾2
.

Setting 𝛾 = 𝛾1 + 𝛾2, this is (2𝛽 + 1)ℓ𝑛
(
2𝛽+1
𝑞

)ℓ𝑛−𝛾
, as desired. □

To generate a Kyber key pair along with a proof of possession,

we can use a slightly modified version of our cPoP from Section 4.

The differences will be that the secret values are sampled differ-

ently, 𝜎 is different, and vectors are replaced by polynomials where

appropriate. We then choose parameters as in Section 4.3.1, where

the main difference is the choice of𝑀 , calculated using Lemma 9

instead of Lemma 4. Parameters (𝑁, 𝜏) are the same for Kyber, and

the values of (𝑀,𝜎) are given in Table 2.

6 IMPLEMENTATION AND EVALUATION
We now discuss performance of the key and proof generation and

proof verification, and resulting proof sizes, depending on the num-

ber of parties 𝑁 and the number of parallel executions 𝜏 .

Parameter sizes. Recall that we must choose (𝑁, 𝜏) such that

𝑁𝜏 ≥ 2
^
for ^-bit security, and note that there are many valid pairs

for each ^ . As with all MPCitH proofs with flexible choice of 𝑁 , we

have a speed-size tradeoff: larger 𝑁 gives shorter proofs that are

slower to create and verify (as there are more parties to simulate),

while smaller 𝑁 has larger and faster proofs. The curve is very

steep; a small change in size results in a large change in speed (we

plot these curves for our implementation in Figure 8).

We implemented our construction for all FrodoKEM and Kyber

parameter sets by extending their existing public C code. For Kyber,

Figure 8: KPG and Vf performance and proof size for 128-bit
security
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we use the already highly optimized AVX2 code base, whereas the

FrodoKEM code base has no hand-crafted AVX2 optimized code,

but rather exploits the compiler’s ability to auto-vectorize code.

The benchmarks have been conducted on an Intel Core i7-8565U

CPU running at up to 4.6 GHz, compiled with gcc 11.2.0, and with

the CPU scaling governor set to performance. Figure 8 shows the
median cycle counts for KPG and Vf as well as the median proof

size, all over 100 executions. To obtain reliable median cycle counts

for Vf, we measure the median cycle count of 100 executions of

KPG and Vf. Each of these median values is then subtracted by the

respective median cycle count of KPG.

The proof size varies slightly for non-power-of-two 𝑁 , as it

depends on the values 𝑖∗𝑒 whether ⌊log2 𝑁 ⌋ or ⌈log2 𝑁 ⌉ nodes from
the seed tree must be sent. Thus, the proof size might vary by

±^𝜏 bits around the given median value.

Profile of execution. To get a better understanding of the propor-

tions of single operations, we additionally profiled 1000 iterations of

combined runs of KPG and Vf for the implementation of Kyber512

with 𝑁 = 4, 𝜏 = 64 using gprof 2.38. For Kyber512 approximately

51% of the time is spent hashing (out of which 74% is parallelized)
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and 26% on sampling uniform randomness mod 𝑞, which is partially

parallelized. Arithmetic operations take 7% of the overall time.

Furthermore, 16% is spent on Arrange, which is not parallelized.

Optimizations. For our implementations, we use a number of op-

timizations. In Kyber, we use dedicated AVX2 intrinsics to vectorize

the computation of Δ𝑏𝑘,𝑒 and the computation of the missing shares

{𝑏 (𝑖
∗
𝑒 )

𝑒,𝑘
}𝑘∉𝐶 . For the polynomial arithmetic, we use the already ex-

isting optimized functions. Apart from that, the main goal is to

speed up the costly hashing operations. We instantiate all hash and

expansion functions with SHAKE-128 for ^ = 128 and SHAKE-256

for ^ ∈ {192, 256} and apply domain separation where necessary.

We use the existing AVX2-enabled 4-times parallel hashing where

possible: to compute the commitments com
(𝑖 )
𝑒 in KPG and com

(𝑖 )
𝑒

in Vf, respectively; and to expand the seeds both in KPG and Vf.

Additionally, we hash the values B(𝑖 )𝑒 in parallel, and then add their

hashes to𝑚2 rather than the shares themselves. Similarly, we hash

the audited bundles 𝑋𝑒 for each party in parallel, and then add their

hashes to𝑚2 rather than the audited bundles themselves. The latter

two adjustments also help us reduce the memory footprint during

verification, where we need to reconstruct one share per parallel

execution. Instead of buffering 𝑁 − 1 matrices B(𝑖 )𝑒 for FrodoKEM

(or polynomial vectors for Kyber) and 𝑁 − 1 audited bundles per

parallel execution, we only need to buffer 2(𝑁 − 1) hash values

until we can compute the two missing hashes.

In KPG, storing all 𝑁𝜏 shares (each with𝑀 values) until Phase 3

is the potentially most memory-consuming operation. We tackle

this by not storing the shares after the offsets Δ𝑏𝑘,𝑒 are computed

incrementally. Because of this, however, it is necessary to re-sample

the shares for Phase 3 of KPG. On the other hand, we achieve that

our implementations do not exceed 8MB RAM usage for any of the

parameter choices in Figure 8 as well as for the higher parameter

sets in Appendix D. If we just store the shares and omit re-sampling,

the cycle count for KPG is reduced by 30% for Kyber512 with 𝑁 =

4, 𝜏 = 64.

More details on performance and proof size at higher security

levels can be found in Appendix D.

7 CONCLUSION AND DISCUSSION
From our construction, we can achieve a proof of possession for

KEM keys that can be used in a non-interactive certificate enroll-

ment process, similar to Certificate Signing Requests.

It is the case that our combined proof and key generation method

means only a single proof can be generated. To authenticate other

events in the certificate lifecycle, we cannot use a proof from the

same verifiable generation approach (since proof generation hap-

pens concurrently with key generation), but fortunately certificate

lifecycle protocols like ACME already allow for revocation events to

be signed by a separate account key [6, §7.6]. Furthermore, by using

the attributes field we can bind a signature public key to the PoP

and use it for subsequent PoPs (or revocation), as a work-around.

It is not required to know the authority or to obtain a nonce

from them in advance, since this would break the desirable non-

interactive property of CSRs. For example, the ACME Protocol

[6] for certificate enrolment does not require that CSR contents

are bound to the protocol or CA, and ACME doesn’t include any

provisions preventing CSR replays (which is often considered a

feature, e.g. where the ACME client is run outside of the production

network and does not have access to the private key).

Our construction allows arbitrary attributes to be bound to the

key generation, which can be used to incorporate the standard fields

from a CSR or more, binding the key generation to its intended use.

Compared to existing techniques to prove knowledge of LWE

secrets, our MPCitH-based approach for proof of possession via

verifiable generation can be configured to both run in reasonable

time and achieve reasonably low proof sizes; see Table 1 for some

comparisons. Additionally, the flexibility in parameter choice allows

adjustments to meet use case requirements. For CSRs, which are

usually generated infrequently, a runtime on the order of a second

might be acceptable, which helps to keep communication cost low

while still providing reasonable user experience. On the other side,

when a larger proof is acceptable, it is possible to run KPG and

Vf in less than 10 ms for Kyber512.

Furthermore, our construction scales well for higher parameter

sets with ^ ∈ {192, 256}. To the best of our knowledge, we are the

first to give a practical proof of possession with parameters and an

implementation for lattice secrets for security levels above 128 bits.

We have demonstrated our technique for FrodoKEM and Kyber.

For the remaining NIST Round 3 lattice-based KEMs, SABER [27]

and NTRU [23], our approach may be applied in some form, since

MPCitH is so flexible. However, doing so efficiently may require

some additional research, due to differences in the constructions.

SABER is close in structure to FrodoKEM and Kyber, but its public

key computation includes a right-shift that removes low-order bits

from the public key, which is not conducive to efficient implemen-

tation in our MPCitH approach. NTRU has more differences in its

structure, and key generation includes an inversion operation in

the ring which can be implemented with an MPCitH proof, albeit

with a different MPC protocol (e.g., see [7] for approaches to imple-

menting the AES S-box, which is a field inversion). To follow our

approach, one would also need to prove analogs of Lemmas 4 and 9

about uniqueness of small solutions.
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A ON THE ROLE OF PROOFS OF POSSESSION
The overarching role of a PKI is to bind a cryptographic public

key to an identity – typically some form of name – by way of

digital certificates and this is the primary role of the Certification

Authority (CA) which issues certificates [2]. It stands to reason that

prior to issuing a certificate, the CA must verify that the requester

is the entity named in the certificate request, and that they own the

requested public key; that is, that they possess the corresponding

private key.

As the security of a PKI and the applications that rely on it is

complex to define with many subtleties, it is not always obvious

what security value proofs of possession at certification time (PoPs)

provide [5]. The arguments for the necessity of PoP at certification

time generally follow that without it, it becomes possible for an

entity to obtain a certificate containing a public key for which they

do not possess the corresponding private key. While the holder of

such a certificate can not directly use it (as they do not have the

corresponding private key), there are several scenarios in which

the existence of such certificates undermine the security of PKI.

Strong proof of possession checks at certification time guard

against various forms of “sloppy application protocol” implemen-

tations [5]. Consider, for example, non-interactive protocols such

as S/MIME [65] where the sender must rely on the accuracy of the

recipient’s encryption certificate as the only guarantee of confiden-

tiality between the sender and the recipient. If the corresponding

private key is in fact owned by a different entity than the one named

in the certificate, then the sender actually has no guarantees about

who may be able to read the encrypted message.

This can be escalated into an attack, described by Cheval et

al. [25] and referred to here as a forwarding attack, which works

against a naively-implemented sign-then-encrypt protocol where

the signer’s certificate is carried externally to the signed-then-

encrypted content. Imagine Alice signs a message and then en-

crypts it using the encryption public key in Bob’s certificate. Eve

intercepts the message but is unable to read it due to the encryption.

Assume Eve can get a ‘malicious’ certificate with her name and Al-

ice’s public key Cert(“Eve”, pk
Alice

) – the issuance of which would

be prevented by a PoP check by the issuing CA. Depending on the

details of the protocol, Eve may be able to supply her malicious

certificate with the message in such a way that Bob will decrypt the

message and validate the inner signature against Eve’s certificate,
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KEM.KeyGen(1^ )
1 : (pk′, sk′ ) ← PKE.KeyGen(1^ )
2 : 𝑠 ←$ {0, 1}^

3 : sk← (𝑠, sk′ )
4 : return (pk′, sk)
KEM.Encaps(pk)
1 : 𝑚 ←$ {0, 1}^

2 : 𝑐 ← PKE.Enc(pk,𝑚;G(𝑚) )
3 : 𝐾 ← H(𝑐 ∥𝑚)
4 : return (𝑐, 𝐾 )

KEM.Decaps(sk, 𝑐)
1 : 𝑚′ ← PKE.Dec(sk, 𝑐 )
2 : if 𝑐 = PKE.Enc(pk,𝑚′;G(𝑚′ ) )
3 : return H(𝑐 ∥𝑚′ )
4 : else

5 : return H(𝑐 ∥𝑠 )

Figure 9: The Fujisaki–Okamoto transform (variant FO ̸⊥

from [43]) creates the KEM (KeyGen, Encaps,Decaps) from
the PKE (KeyGen, Enc,Dec). The functions G and H are hash
functions modeled as random oracles.

thus assuming that Eve is the originator of the message. This could

lead to a number of attacks, including information disclosure if Bob

replies directly to Eve and includes the content of Alice’s message,

for example if Bob’s reply contains the original message.

PoP checks at certification time also guard against some forms

of implementation errors at enrollment time; for example when a

certificate enrollment requires a certificate signing request (CSR)

containing the requested name and attribute information, then it re-

mains integrity-protected during transmission from the key-holder

to the CA, preventing accidental or malicious modification and

providing assurance that the name and attributes remain associated

with the intended key pair.

Finally, while not directly a security argument, since PoP checks

– particularly CSRs – form the basis of many modern certificate

enrollment protocols, extending the existing PoP mechanisms to

cover KEM keys would allow for continued use of existing proto-

cols and avoids the engineering effort – and associated security

bugs – that would come from designing completely new enrollment

mechanisms (both processes and protocols) for KEM keys.

B DECAPSULATION SIMULATABILITY OF
THE FUJISAKI–OKAMOTO TRANSFORM

In this section we define the security notion of decapsulation simu-
latability for KEMs, and prove that KEMs constructed with the FO

transform satisfy this notion.

As the FO transform takes a PKE as input, we recall it briefly.

A public key encryption (PKE) scheme is a triple of algorithms

PKE = (KeyGen, Enc,Dec). Key generation is used to generate

a key pair, (pk, sk) ← KeyGen(1^ ). We can encrypt message a

message𝑚 and randomness 𝑟 (chosen from the appropriate spaces)

with 𝑐 = Enc(pk,𝑚; 𝑟 ) and decrypt a ciphertext 𝑐 with Dec(sk, 𝑐).
Decryption may output ⊥ to indicate that the ciphertext is invalid

and decryption has failed. Encryption is probabilistic unless other-

wise noted.

B.1 The FO Transform
In Figure 9 we give the specific details of the variant of the FO trans-

form we study. This version is called “FO with implicit rejection”

and denoted FO̸
⊥
in [43], and underlies the KEM constructions of

Kyber [66] and Frodo [58]. In [43] the transform is separated into

two parts: first any IND-CPA secure scheme PKE is transformed to

PKE1 by derandomizing encryption by generating the randomness

by hashing the message, and adding the re-encryption check in

decapsulation. The second part uses PKE1 to construct the KEM

with implicit rejection. Our presentation in Figure 9 combines these

two parts. In practice, Kyber and Frodo also derandomize the PKE

by deriving the random coins used for PKE.Enc from 𝑚. This is

necessary to ensure that the same ciphertext is re-created during

the re-encryption step of decapsulation (a property called rigidity
in [43]).

B.2 Decapsulation Simulatability
For a KEM, we define the security notion of decapsulation sim-
ulatability. The decapsulation operation of a KEM is said to be

simulatable if there exists a simulator Sim, such that Sim takes a

public key pk and ciphertext as input and has outputs that are in-

distinguishable from KEM.Decaps. In Figure 10 we formally define

the KEM-SIM security with a game; we say that a KEM is KEM-SIM
secure if no adversary wins this game with probability significantly

better than 1/2. Of course if such a simulator were efficiently im-

plementable by any party the KEM would not be secure, so it only

makes sense in an idealized model where Sim has some additional

capability, such as the ability to choose system parameters, or sim-

ulate hash functions in the random oracle model (ROM). Our focus

will be on the ROM setting, and our definition makes this explicit by

adding the random oracle H and simulated version HSim as inputs

to the adversary.

Game KEM-SIM

1 : (pk, sk) ← KEM.KeyGen(1^ )
2 : 𝑏←$ {0, 1}

3 : if 𝑏 = 0 then 𝑏′ ← ADecaps(sk,·),H( ·) (pk)

4 : if 𝑏 = 1 then 𝑏′ ← ASim
pk
( ·),H

Sim
( ·) (pk)

5 : return ⟦𝑏 = 𝑏′⟧

Figure 10: KEM-SIM security game in the random oracle
model.

In [43], the authors prove that if PKE is IND-CPA secure, then

KEM = FO̸
⊥ [PKE] is IND-CCA secure. This reduction must answer

Decaps queries from the KEM IND-CCA attacker, and as sk
′
is

generated as part of the IND-CPA game, the reduction has only pk.

Therefore this CCA proof also implicitly proves KEM-SIM security,

giving the result in Theorem 10, which we have re-proven more

directly here. A second requirement of PKE is that it is 𝛿-correct.

We leave the formal definition to [43], but intuitively when 𝛿 is

negligible no efficient adversary can find a message𝑚 such that

Dec(𝑠𝑘, Enc(𝑝𝑘,𝑚)) ≠𝑚, even when given (𝑠𝑘, 𝑝𝑘).
An analogous result in the QROM is given in [43, §4.3.2] and,

like the ROM proof, implicitly proves KEM-SIM security. Therefore,

KEM-SIM security of FO-based KEMs can also be shown in the

QROM (but with worse concrete bounds).
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Theorem 10. Let PKE be an IND-CPA secure public key encryption
scheme that is 𝛿-correct, and let KEM = FO̸

⊥ [PKE] be the KEM ob-
tained by applying the Fujisaki–Okamoto transform given in Figure 9.
Then KEM is KEM-SIM secure in the random oracle model.

Concretely, for any KEM-SIM and IND-CPA adversaries, we have

AdvKEM-SIM
KEM

≤ 2𝑞H/2^ + 𝑞G · 𝛿 + 𝑞GAdvOW-CPA
PKE

where 𝑞G and 𝑞H are the number of queries to the random oracles G
and H (respectively), and ^ is the security parameter.

Proof. The proof is an application of Theorem 3.2 and a modi-

fied version of Theorem 3.4 from [43]. First note that in Figure 9

we apply the transform T from [43], so our presentation of the FO

transform is equivalent to FO̸
⊥
of [43] applied to PKE1 = T[PKE,G]

(Recall that PKE1 is the derandomized version of PKE with a re-

encryption check during decryption). Then we can apply Theorem

3.2 of [43] to show that PKE1 is OW-PCA secure. Briefly, this means

that PKE1 .Enc is a one-way function of the message, even under

plaintext checking attacks. In this type of attack, the adversary

has a plaintext checking oracle, that tests if ciphertext 𝑐 has plain-

text𝑚. Intuitively, after derandomization, anyone can implement a

plaintext checking oracle as

Pco(𝑐,𝑚) Plaintext checking oracle for PKE1
1 : if 𝑐 = PKE1 .Enc(pk,𝑚) then return 1

2 : else return 0

Our use of Theorem 3.2 of [43] is why we require that PKE be

𝛿-correct.

Now we prove that KEM is KEM-SIM secure. We essentially use

part of the IND-CCA security proof of KEM in Theorem 3.4 of [43]

as it already simulates Decaps queries; we use the same approach

to implement the Sim algorithm in the KEM-SIM game. Let B be an

attacker in the OW-PCA game of PKE1; B implements the random

oracle H and the KEM-SIM game for adversary A. We proceed

by a series of games, transitioning from Decaps(sk, ·) in Game 0

to Sim
pk
(·) in Game 3, and quantify A’s success probability for a

bounded number of hash queries 𝑞H (note that in our accounting

each Decaps query incurs a H query). We use the shorthand G𝑖 to

denote the probability that A outputs 1 in game 𝐺𝑖 .

Game 𝐺0. In game 𝐺0, B implements H : {0, 1}∗ → {0, 1}ℓH by

lazy sampling with the list LH (keeping track of previous queries

(𝑐,𝑚) and corresponding output 𝐾 ) as in the left side of Figure 11.

H(𝑐 ∥𝑚) in 𝐺0 and 𝐺1

1 : if ∃ (𝑐,𝑚,𝐾 ) ∈ LH return 𝐾

2 : 𝐾 ←$ {0, 1}ℓH

3 : Add (𝑐,𝑚,𝐾 ) to LH

4 : return 𝐾

Decaps(𝑐) in 𝐺1

1 : 𝑚′ ← PKE.Dec(sk, 𝑐 )
2 : if 𝑚′ = 𝑠 return H

′ (𝑐 )
3 : if 𝑐 = PKE.Enc(pk,𝑚′;G(𝑚′ ) )
4 : return H(𝑐 ∥𝑚′ )
5 : else

6 : return H
′ (𝑐 )

Figure 11: Oracles used used in games𝐺0 and 𝐺1 in proof of
Theorem 10.

Since B implements the KEM-SIM game exactly as in Figure 10,

and Sim is the same as Decaps, A’s advantage is exactly 1/2.

Game 𝐺1. In game 𝐺1, we change Decaps so that B no longer

makes use of the secret key component 𝑠 during Decaps as shown

in the right side of Figure 11: we replace H(𝑐 ∥𝑠) with H
′ (𝑐) where

H
′
is a private random oracle internal to B. B also returns H

′ (𝑐)
for H(𝑐 ∥𝑚) in the Decaps oracle in the event that𝑚′ = 𝑠 . Since 𝑠 is
chosen uniformly from {0, 1}^ , G1 − G0 ≤ 𝑞H/2^ .

Game 𝐺2. In game 𝐺2 we change B to no longer make use

of the secret key component sk
′
, by changing Decaps and H as

shown in Figure 12. In 𝐺2 the list L𝐷 keeps track of (𝑐, 𝐾) such
that Decaps(𝑐) = 𝐾 , and either H was queried on (𝑐,𝑚) or H was

queried on 𝑐 .

H(𝑐 ∥𝑚) in 𝐺2 and 𝐺3

1 : if ∃ (𝑐,𝑚,𝐾 ) ∈ LH

2 : return 𝐾

3 : 𝐾 ←$ {0, 1}ℓH

4 : if m = s then abort // Only in𝐺2

5 : if Pco(𝑐,𝑚) = 1 then

6 : if ∃ 𝐾 ′𝑠.𝑡 .(𝑐, 𝐾 ′ ) ∈ L𝐷

7 : 𝐾 ← 𝐾 ′

8 : else

9 : Add (𝑐, 𝐾 ) to L𝐷

10 : Add (𝑐,𝑚,𝐾 ) to LH

11 : return 𝐾

Decaps(𝑐) in 𝐺2 and 𝐺3

1 : if ∃ (𝑐, 𝐾 ) ∈ L𝐷

2 : return 𝐾

3 : else

4 : 𝐾 ←$ {0, 1}ℓH

5 : Add (𝑐, 𝐾 ) to L𝐷

6 : return 𝐾

Figure 12: Oracles used used in games𝐺2 and 𝐺3 in proof of
Theorem 10.

We now argue that G2 = G1. Consider a fixed ciphertext 𝑐 , with

𝑚′ = PKE1 .Dec(sk, 𝑐).
• Case 1:𝑚′ ∈ {⊥, 𝑠}. We argue that such a 𝑐 cannot be added

to L𝐷 via an H-query. Querying 𝑚′ = ⊥ is not allowed,

and if𝑚′ = 𝑠 is queried, 𝐺2 aborts. Therefore, when such a

𝑐 is queried to Decaps, it is not in L𝐷 , so a random key 𝐾

is output, as in 𝐺1.

• Case 2:𝑚′ ∉ {⊥, 𝑠}. For this case we must show that 𝐺2’s

implementation of H and Decaps appear consistent to A
(as they were in 𝐺1). There are two sub cases, depending

on the order that A queries H and Decaps.

– First is the “natural” order, i.e., the order that occurs

when following the code ofKEM.Encaps thenKEM.Decaps

from Figure 9. A starts with the query H(𝑐 ∥𝑚′), and
we have Pco(𝑐,𝑚′) = 1 so (𝑐, 𝐾) with a random 𝐾 is

added to L𝐷 , defining Decaps(𝑐) = 𝐾 = 𝐻 (𝑐 ∥𝑚′) as
in 𝐺1.

– Now for the reverse order. A queries Decaps(𝑐), and
there is no entry in L𝐷 , so a random 𝐾 is output and

(𝑐, 𝐾) is logged in L𝐷 . WhenH(𝑐 ∥𝑚′) is subsequently
queried, again Pco(𝑐,𝑚′) = 1 and this time 𝑐 is found

in L𝐷 , so that the correct value of 𝐾 is returned, and

we have H(𝑐 ∥𝑚′) = Decaps(𝑐).
Since A’s view is identical in games 1 and 2, we have G2 = G1.
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Game 𝐺3. Finally, in game 3 we modify B to stop using 𝑠 for

H queries; we simply delete Line 4 as shown in Figure 12. Since

𝑠 is not used elsewhere, and is chosen uniformly at random from

{0, 1}^ , the probability of an abort is negligible and the change will

go unnoticed by A. More precisely, we have G3 − G2 = 𝑞H/2^ . In
Game 3 B no longer uses sk, and so Sim

pk
and HSim are given by

their 𝐺3 versions in Figure 12.

In the KEM-SIM game, A’s advantage corresponds to G3 −
G0. Collecting the probabilities, we have that A’s concrete ad-

vantage is bounded by 2𝑞H/2^ + AdvOW-PCA

PKE1

(B). The bound on

Adv
OW-PCA

PKE1

(B) given by [43, Theorem 3.2] is

Adv
OW-PCA

PKE1

(B) ≤ (𝑞G + 𝑞𝑃 )𝛿 + (𝑞G + 𝑞𝑃 )AdvOW-CPA

PKE

where 𝑞G is the number of queries to the random oracle G and 𝑞𝑃 is

the number of plaintext checking queries. Since the plaintext check-

ing queries are simple re-encryption checks, they do not require an

oracle query, only a query to the hash function G. Therefore, the

bound can be simplified by having 𝑞G account for both plaintext

checking andG-queries (as was done in the theorem statement). □

We do not know if in general IND-CCA security of a KEM implies

KEM-SIM security, however this seems plausible based on the KEMs

we considered.

As FrodoKEM and Kyber are constructed from 𝛿-correct2 IND-

CPA encryption schemes with the FO̸
⊥
transform, they also enjoy

KEM-SIM security.

Corollary 1. FrodoKEM and Kyber are KEM-SIM secure.

C COMPOSITION SECURITY OF PROOFS OF
POSSESSION AND KEMS

In Section 4.3 we considered the composition security of our cPoP

protocol and KEMs. Theorem 8 considers one direction, showing

that the KEM does not undermine the security of the cPoP: when

the Decaps function is used as the auxiliary function, the cPoP

remains secure. Here we consider the other direction and show that

adding the cPoP does not undermine security of the KEM.

We must show that, given an IND-CCA-secure KEM, if we then

modify KeyGen to additionally output a proof of possession, the

augmented KEM is also IND-CCA-secure. A first requirement is that

the cPoP be ZK, otherwise it could leak information about the KEM

secret key. But even so, there may still be a bad interaction between

the KEM and the cPoP. For instance, consider a (contrived) KEM

that outputs the secret key when the Decaps algorithm is given an

input that is a valid cPoP. Such a KEM could be IND-CCA-secure

without cPoPs, since creating a valid cPoP is difficult if the cPoP

is unforgeable, but once a cPoP is made public, IND-CCA security

is immediately broken. For this latter composition issue, we rely

on the random oracle model to separate the KEM and cPoP. The

random oracles used to realize the cPoP will, by assumption, be

independent of the random oracles used to realize the KEM (so in

the contrived example above, it becomes impossible for Decaps to

verify the cPoP). The assumption of random oracle independence

can be met in practice by domain separation, where each hash

function is prefixed by a primitive-specific value.

2
For FrodoKEM, 𝛿-correctness is analyzed in the specification [58, §2.2.7], and for

Kyber all parameter sets are chosen to ensure 𝛿 < 2
140

, see the specification [66, §1.5].

The next two definitions make precise what it means to use a

cPoP with a KEM, and for the modified KEM to remain secure.

Definition 11. LetKEM = (KeyGen, Encaps,Decaps) be a key en-
capsulation mechanism. Let KEM

+ = (KeyGen+, Encaps,Decaps)
be an associated KEM that integrates a key generation and proof of

possession scheme (Definition 1). We call KEM
+
a key encapsulation

mechanism with verifiable generation. The key generation function

KeyGen
+
takes as input the string attrs, and outputs (pk, sk, 𝜋)

where (pk, sk) is the KEM keypair, and 𝜋 is a proof of possession

for sk with respect to pk and the attributes attrs. Note that this

requires KeyGen
+
to output (pk, sk) that are identically distributed

to KeyGen.

Definition 12. A key encapsulation mechanism with verifiable

generation, KEM
+
, is IND-CCA-secure if no efficient adversary

wins the IND-CCA
+
security game for KEMs. The game IND-CCA

+

is identical to IND-CCA, except that the attrs string required for

KeyGen
+
is chosen by the adversary at the start of the experiment.

Analogous to Definition 12 we can define what it means for

KEM
+
to be KEM-SIM secure.

Definition 13. A key encapsulation mechanism with verifiable

generation, KEM
+
, is KEM-SIM-secure if no efficient adversary

wins the KEM-SIM
+
security game for KEMs. The game KEM-SIM

+

is identical to KEM-SIM (Figure 10), except that the attrs string

required for KeyGen
+
is chosen by the adversary at the start of the

experiment.

We now prove that FrodoKEM remains IND-CCA- and KEM-

SIM-secure when combined with our verifiable generation scheme;

the proof may easily be adapted to Kyber. As noted above, we model

all random oracles separately.

Theorem 14. Let KEM be the FrodoKEM key encapsulation mech-
anism, and KEM

+ be the associated KEM with verifiable genera-
tion, using our cPoP protocol of Section 4.2 with random oracles
Commit, ExpandTape, 𝐻1, 𝐻2 independent from those used in KEM.
Then KEM

+ is IND-CCA+-secure and KEM-SIM+-secure in the ran-
dom oracle model.

Proof. We start with IND-CCA
+
, and give the reduction in

detail; the reduction for KEM-SIM
+
is nearly identical.

First we note that KEM = (KeyGen, Encaps,Decaps) is IND-
CCA-secure [58]. In Theorem 8 we have shown that the protocol of

Section 4.2 is a secure cPoP (Definition 2). By the correctness prop-

erty of the cPoP, the outputs (pk, sk) of KeyGen+ are identically
distributed to those of KeyGen.

We now reduce the IND-CCA
+
security of KEM

+
to the IND-

CCA security of KEM in the ROM. Let C be the challenger for

the IND-CCA security game of KEM, played with our reduction

algorithm B. Algorithm B is attacking the IND-CCA security of

KEM, using algorithm A as a subroutine. Algorithm A is an IND-

CCA
+
attacker for KEM

+
.
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Table 2: Parameter selection for FrodoKEM and Kyber based
on Section 4.3.1. At security level ^, to ensure with high prob-
ability 𝜎 secret key entries at most 𝛾 of which may not be
small, generate𝑀 bundles and audit𝑀 − 𝜎 of them.

Security FrodoKEM Kyber

level ^ 𝜎 𝑀 𝛾 𝜎 𝑀 𝛾

128 10240 13233 341 1024 1280 336

192 15616 19485 591 1536 1870 558

256 21504 25986 919 2048 2493 744

Message flows. Algorithm B is initialized by C with a public key

pk output by KEM.KeyGen. We allow A to output the attributes

string attrs, following the IND-CCA
+
game. Since the cPoP scheme

is ZK (see Definition 3 and Lemma 5), B uses Sim(pk, attrs) to
simulate 𝜋 , a proof of possession for sk associated with pk. (Sim

uses the random oracles to simulate transcripts.) All other messages

from A in the IND-CCA
+
game are simply passed through by B

to C.

Random oracles. There are multiple independent random oracles

in use during the reduction. First, FrodoKEM uses three ROs (𝐺1,𝐺2,

and 𝐹 ) during KEM.Encaps and KEM.Decaps and KEM.KeyGen.

These are implemented by C, and B is given oracle access to them.

Since KEM
+
uses these ROs in exactly the same way as in KEM,

when A makes queries to these to ROs, B simply proxies them

to the corresponding oracles exposed by C. Our cPoP uses four

ROs (Commit, ExpandTape, 𝐻1, 𝐻2) during KEM
+ .KeyGen. These

are all simulated by B and exposed to A; in particular note that

Sim depends on these RO to simulate transcripts.

Success Probability. We now argue that when A is successful

in the IND-CCA
+
game, B is successful in the IND-CCA game.

First we argue that B’s simulation of 𝜋 is indistinguishable. We

proceed with a hybrid argument. In game 𝐺0, B does not use Sim;

it calls cPoP.KPG and generates (sk, pk, 𝜋) honestly. Then in 𝐺1,

B no longer uses sk but instead uses the pk value from C, and the

simulator to create 𝜋 . By correctness of cPoP.KPG, pk is identically

distributed in both games, and by the zero-knowledge property 𝜋 is

distributed statistically close in both games (the distributions differ

by at most a negligible distance Y
ZK
). In particular this means the

distribution of 𝜋 is independent of sk.

The last thing to note is that 𝜋 cannot be verified without access

to the random oracles used by cPoP (Commit, ExpandTape, 𝐻1, 𝐻2).

This is easy to see by inspection of Figure 5, as the last step of

verification compares two hash digests. It follows that the output

distribution of KEM.Decaps cannot depend on the validity of a well-

formed proof string 𝜋 . Since the simulation is indistinguishable to

A and KEM.Decaps behaves identically in the real and simulated

games, B succeeds in the IND-CCA game when A succeeds in the

IND-CCA
+
game.

KEM-SIM Security. By our analysis in Appendix B, FrodoKEM

is KEM-SIM-secure (Theorem 10 and Corollary 1). Using the same

setup as in the IND-CCA case, we can use a KEM-SIM
+
attacker

A to construct a KEM-SIM attacker B. The same main arguments

apply: replacing the proof 𝜋 with a simulated proof is indistinguish-

able, and the simulated 𝜋 is may not be verified without access to

the independent ROs that instantiate the proof system. □

D ADDITIONAL DETAILS OF PARAMETERS,
PERFORMANCE AND COMPARISON

Table 2 shows secure choices of𝑀 for all security levels of FrodoKEM

and Kyber depending on ^ according to Equation (4).

Table 3 and Figures 13 and 14 show runtime performance and

proof sizes for our approach applied to FrodoKEM and Kyber at the

192- and 256-bit security levels.
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Figure 13: KPG and Vf performance and proof size for the 192-bit security level

(a) Kyber-768, ^ = 192
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(b) FrodoKEM-976, ^ = 192
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Figure 14: KPG and Vf performance and proof size for the 256-bit security level

(a) Kyber-1024, ^ = 256
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(b) FrodoKEM-1344, ^ = 256
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Table 3: KPG and Vf performance and proof size for FrodoKEM and Kyber at 3 security levels

Level 1 (^ = 128) Level 3 (^ = 192) Level 5 (^ = 256)
𝑁 proof size KPG time Vf time proof size KPG time Vf time proof size KPG time Vf time

kB ×106 cycles ×106 cycles kB ×106 cycles ×106 cycles kB ×106 cycles ×106 cycles
FrodoKEM

4 1594.1 169.2 152.0 3752.9 524.8 430.7 6671.2 1265.2 973.8

8 1072.3 230.4 210.8 2504.3 664.7 603.9 4485.8 1702.6 1369.6

31 650.0 555.8 553.4 1538.9 1618.9 1509.8 2716.6 3609.5 3292.5

256 401.5 2901.3 2909.8 943.6 7490.0 8129.9 1675.8 17053.9 18393.5

Kyber

4 127.2 8.8 8.9 278.8 23.7 23.7 495.4 44.0 44.5

8 86.2 12.0 11.7 187.5 29.5 30.1 335.7 56.0 54.3

31 53.0 25.5 26.4 116.2 66.8 69.4 206.5 121.8 138.4

256 33.4 130.5 149.5 73.3 332.4 331.3 130.3 640.9 589.9

Using same 𝜏 corresponding to the 𝑁 as given in Figures 8, 13 and 14.
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