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Abstract

To reduce the damage of phishing and spyware attacks, banks, governments, and other
security-sensitive industries are deploying one-time password systems, where users have many
passwords and use each password only once. If a single password is compromised, it can be only
be used to impersonate the user once, limiting the damage caused. However, existing practical
approaches to one-time passwords have been susceptible to sophisticated phishing attacks.

We give a formal security treatment of this important practical problem. We consider the use
of one-time passwords in the context of password-authenticated key exchange (PAKE), which
allows for mutual authentication, session key agreement, and resistance to phishing attacks.
We describe a security model for the use of one-time passwords, explicitly considering the
compromise of past (and future) one-time passwords, and show a general technique for building
a secure one-time-PAKE protocol from any secure PAKE protocol. Our techniques also allow for
the secure use of pseudorandomly generated and time-dependent passwords.

Keywords: one-time passwords, key exchange, protocols, cryptography

1 Introduction
Many security attacks on the Internet today, such as phishing and spyware, aim to compromise
a user’s password. As a result, some businesses and government agencies are deploying one-time
password systems. In these systems, users carry a sheet of paper listing passwords or an electronic
device that generates passwords, and use a different password each time they log in. Ideally, without
obtaining this physical list of passwords (or the device generating them), an attacker should be
unable to impersonate the user.

It is unfortunately too easy these days for passwords to be compromised. For example, users at
an Internet café cannot trust that the café operator has not installed a key logger, yet they may still
have an urgent need to login to a particular website. Many home users unknowingly have malware
installed on their computer. One-time password systems can help reduce the damage from such
compromises: although we cannot prevent the password from being stolen, it can only be used once,
and reveals no information about future passwords. As a result, one-time password systems are
being deployed by banks, governments, and corporate virtual private networks (VPNs).

However, most deployments of one-time passwords have not used them in the strongest way
possible. In a typical usage, Alice visits a bank’s website in her browser, views a challenge on
the website indicating which one-time password to use, and enters that one-time password into
her browser, which transmits the one-time password to the website. This type of usage remains
susceptible to the same phishing attacks that threaten regular passwords today: if Alice did not really
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have an encrypted link with her actual bank, then an attacker may be able to learn the one-time
password and impersonate Alice. Unfortunately, average users are not very good at telling if a
SSL/TLS connection is really encrypted and authenticated.

More advanced cryptographic protocols, such as password-authenticated key exchange (PAKE), can
allow us to use passwords in a secure way that reveals no useful information about the password to
a phishing or man-in-the-middle attacker. These protocols can provide strong mutual authentication
as well: not only does the bank learn whether Alice knows her password, but Alice learns whether
the bank knows her password.

To date, one-time password schemes have not been formally studied using techniques from
provable security. One existing work [ACP05a] presents a PAKE protocol that uses pseudorandom
passwords, but does not consider how the security properties of one-time passwords or pseudorandom
passwords differ from normal long-term passwords. The goal of this work is to describe and formalize
security properties for one-time password systems, especially in the context of authenticated key
exchange protocols.

We emphasize that one-time password schemes are practical, as numerous deployments [RSA09,
Nat09, Nor09, F-S05, Bli09] have shown. Businesses that have already deployed one-time passwords
in the form of token cards or sheets of paper could benefit from the greater security offered by our
techniques by upgrading their back end systems without needing to deploy new password data to
users; however, clients would need to upgrade their browsers or VPN clients to support these new
protocols.

Contributions. In this work, we aim to answer three questions on the security of one-time
password schemes:

1. How should we model the security of one-time password schemes?
2. How should we build secure one-time password schemes?
3. Are existing one-time password schemes secure?
To answer the first question, we describe in Section 2 an extension to the Bellare-Pointcheval-

Rogaway [BPR00] PAKE security model that adds one-time passwords and handles the compromise
of other past or future one-time passwords.

For the second question, we give a general construction in Section 3 for building a one-time-
PAKE protocol from any PAKE protocol and show that this transformation preserves security. The
transformation itself is straightforward and efficient, and allows for extensions to the basic function-
ality of one-time passwords: the secure use of pseudorandomly generated passwords (Section 4),
time-dependent passwords (Section 5), and verifier-based one-time passwords, in which the server
stores a one-way transformation of the passwords, not the passwords themselves (Section 2.2).

Existing uses of one-time passwords over TLS connections can be troublesome as they require a
public key infrastructure and users often have difficulty validating public keys. To our knowledge,
the only existing consideration of one-time passwords in PAKE is the OPKeyX protocol [ACP05a],
which requires the one-time passwords be of a particular form (namely, a hash chain), and that
future passwords not be revealed. We discuss the security of OPKeyX in Section 6, noting that our
model is stronger and allows for arbitrary passwords to be revealed.

Outline. The rest of this paper is organized as follows. In Section 1.1, we describe related work.
Section 2 deals with the security of one-time password protocols: it introduces the general properties
we seek, and then presents a security model encompassing those properties. In Section 3, we give
our central theoretical result that secure one-time-password-authenticated key exchange protocols
can be built out of secure password-authenticated key exchange protocols. We then discuss the use
of pseudorandom (Section 4) and time-dependent (Section 5) passwords. We conclude with a brief
discussion of how this work relates to the existing OPKeyX protocol in Section 6 and some general
conclusions in Section 7.
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1.1 Related work

Many businesses, especially banks, have adopted one-time passwords in their authentication pro-
cedures. One-time passwords can be efficiently deployed using electronic tokens [RSA09], using
a chip-and-pin card in combination with a reader device as some British banks are doing [Nat09],
or on sheets of paper as some European banks do [Nor09]; interestingly, there have subsequently
been phishing attacks specifically targeting these sheets of one-time passwords [F-S05]. One-time
passwords are also being used for stronger authentication in virtual economies such as World of
Warcraft [Bli09]. The Internet Engineering Task Force (IETF) has standardized various mechanisms
for deriving [Hal95, HMNIS98] and using [Kau05, Nys07, KS08] one-time passwords. While all of
these systems may generate and deploy one-time passwords securely, none of them proceed to use
one-time passwords in cryptographically secure way.

Password-authenticated key exchange was first introduced by Bellovin and Merritt in 1992 [BM92]
as a protocol in which the client and server share a plaintext password and exchange encrypted
information to allow them to derive a shared session key. A later variant [BM93], often called
verifier-based, removed the requirement that the server have the plaintext password, instead having
a one-way transformation of the password.

The most extensively used model for the security of PAKE protocols is the Bellare-Pointcheval-
Rogaway (BPR) model [BPR00] and its extension [GMR05] for verifier-based protocols. This model
is the starting point of our model for the security of one-time-PAKE protocols. One particular such
protocol is the PAK protocol [BMP00a, Mac02], which is the basis of our construction in the full
version of this paper.

Various authors have noted the value of using one-time passwords in authenticated key exchange
protocols [ACP05a, FMCS04, Ste09]. Abdalla et al. [ACP05a] (see also [CSH05]) describe the
OPKeyX protocol, a verifier-based one-time-PAKE protocol. It uses a hash chain to derive subsequent
one-time passwords from a seed such that the server can verify but not compute the next password.
We will discuss OPKeyX in greater detail in Section 6.

2 Security of one-time-password protocols
The main security property that protocols employing one-time passwords should achieve is: strong
mutual authentication based on knowledge of one-time passwords. Our work will address one-time
passwords in the context of PAKE protocols, which provide an additional property: secure key
exchange.

The motivation for using one-time passwords is that the compromise of one password should
not affect the security of sessions involving another password. The one-time password serves to
mutually authenticate the client and the server; there are no other long-term values like public keys
or certificates. Authentication is based on knowledge of the shared password. Informally, a protocol
will provide secure mutual authentication if no honest party Â accepts a session as being with party B̂
unless B̂ participated in the protocol, and vice versa. We want a one-time-password protocol to give
secure mutual authentication for the current session even if other one-time passwords have been
revealed. Such passwords could be revealed accidentally by the user or obtained by an adversary
who has installed malware on the user’s computer, for example.

In addition to mutually authenticating two parties to each other, we want a protocol that will also
output a session key that can be used to encrypt and protect the integrity of future communications
between those two parties. This is a common feature required of many secure communication
protocols.

The traditional use of one-time passwords – sending the password over a TLS connection – is
not compatible with our approach. Using TLS to establish an authentic channel requires that the
user can obtain and properly use an authentic public key for the server. In other words, it requires a
public key infrastructure, whereas one-time-PAKE only needs shared passwords. We need not remove
the TLS infrastructure, however: one-time password-authenticated key exchange could be provided
as a new TLS cipher suite.
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2.1 Security model

In the most widely adopted security model for PAKE, that of Bellare, Pointcheval, and Rogaway
[BPR00], when the adversary corrupts a party it learns all of the party’s authentication secrets at
once. In the one-time password setting, we want to model the situation where users have multiple
passwords and the attacker can learn the passwords one by one. This more closely models the
functionality, design goals, and capabilities of the adversary in many one-time password scenarios.

Participants. An instance of the protocol takes place between two interacting parties, each of
which is a member of the set Parties; each party is identified by a unique fixed length string. Each
pair of distinct parties {Â, B̂} shares a set of one-time passwords {pwÂ,B̂,ch} indexed by ch ∈ Indices,
the set Indices being publicly known (we use the notation ch to suggest that the one-time password
may be selected in response to a challenge, although the model does not assume that need be the
case). We note that pwÂ,B̂,ch = pwB̂,Â,ch (this is the symmetric setting; in Section 2.2, we discuss how
to model verifier-based one-time passwords). The size of the set Indices determines the maximum
number of passwords shared between each pair of parties. Each one-time password is chosen
uniformly at random from the set Passwords.1

Protocol execution. The protocol is a message-driven protocol. During execution, a party Û
may have multiple instances of the protocol running; each instance is modelled as an oracle and is
denoted by ΠÛ

(Û ′,ch)
: it is indexed by the values (Û ′,ch) ∈ Parties× Indices, where Û ′ is its purported

partner and ch is the one-time password index for that instance. A party Û must be activated to
act as an initiator or a responder with Û ′ for a particular instance by having oracle ΠÛ

(Û ′,ch)
be

sent a message of the form “initiator” or “responder”, respectively. An instance for a particular
partner-index pair can only be activated once. This restriction can be achieved by having each party
maintain a record of used one-time passwords. In practice, this is easy to achieve: for example, a
user could cross out a one-time password on a piece of paper once it has been used, or increment a
counter if pseudorandomly generated passwords are used.

There are distinguished instances ΠÛ
(Û ′,⊥)

which can be sent messages of the form “initiator” or

“responder”; Û then picks an unused one-time password index ch and activates the corresponding
instance ΠÛ

(Û ′,ch)
with the given role.

There is a sequence of messages, or flows, specified by the protocol, starting with a flow from the
initiator to the responder, then from the responder to the initiator, and so on. After some number
of flows, an instance may accept, at which point it holds a session key sk, partner id pid, and session
id sid, and, possibly after some additional flows, terminate. Alternatively, at any point in time, an
instance may reject (note that instances that reject have not terminated; accepting is a precondition
for terminating). Two instances ΠÂ

(pid,ch) and ΠB̂
(pid′,ch′)

are said to be partnered if they both accept,

hold (pid, sid, sk) and (pid′, sid′, sk′), respectively, with pid = B̂, pid′ = Â, sid = sid′, sk = sk′, and
ch = ch′, and no other instance accepts with session id equal to sid. It is likely that the session
identifier will include the one-time password index ch.

Definition 1 (Correctness) A protocol is said to be correct if, for all distinct Â, B̂ ∈ Parties and all
ch ∈ Indices, whenever messages are faithfully relayed between ΠÂ

B̂,ch
and ΠB̂

Â,ch
, both instances are

partnered and terminate with probability 1.

Queries allowed. The protocol is determined by how participants respond to inputs from the
environment, and the environment is considered to be controlled by the adversary, which is a
probabilistic algorithm that issues queries to parties’ oracle instances and receives responses. For a
protocol P, the queries that the adversary can issue are as follows (where clear by the setting, we
may omit the subscript P). The first two queries model normal operation of the protocol:

1One common complaint about models for PAKE protocols is the typical assumption that passwords are uniformly
distributed. In practice, human-selected passwords are rarely uniformly distributed. By contrast, one-time passwords are
more likely in practice to be uniformly distributed since they are often generated by a computer.

4



• ExecuteP(Â, B̂,ch): This query activates initiator instance ΠÂ
(B̂,ch)

and responder instance

ΠB̂
(Â,ch)

with one-time password indexed by ch, causes them to faithfully execute protocol P,
and returns the resulting transcript.

• SendP(Û , (Û ′,ch), M): Send message M to user instance ΠÛ
(Û ′,ch)

, which performs the appro-

priate portion of protocol P based on its current state and the message M , updates its state,
and returns any resulting messages.

The next two queries model the compromise of information by the adversary:
• RevealSessionKeyP(Û , Û ′,ch): If instance ΠÛ

(Û ′,ch)
has accepted, then it returns the session key

sk held by ΠÛ
(Û ′,ch)

.

• RevealPWP(Û , Û ′,ch): Returns the one-time password pwÛ ,Û ′,ch.
The RevealPW query models the adversary learning the authentication secrets, which corresponds
to weak corruption in the Bellare-Pointcheval-Rogaway model. The adversary cannot modify stored
authentication secrets (also called strong corruption). We note that the RevealPW(Û , Û ′,ch) query
allows the adversary to reveal any password, regardless of whether it has been used in a session.

The final query is used to define the task that the adversary has to achieve in order for the session
key security of the protocol to be considered broken. To define security, the adversary will interact
with a challenger who, simulating the parties, answers all the queries above, as well as this one:
• TestP(Û , Û ′,ch): If instance ΠÛ

(Û ′,ch)
has accepted, then the following happens: the challenger

chooses b ∈R {0,1}; if b = 1, then it returns the session key held by ΠU
(Û ′,ch)

, otherwise it

returns a random string of the same length as the session key. This query may only be asked
once.

Freshness. We adapt the notion of freshness in the Bellare-Pointcheval-Rogaway model to allow the
adversary to compromise one-time passwords from any session except the target session.

Definition 2 (Freshness) In a one-time-PAKE protocol, an instance ΠÛ
(Û ′,ch)

is fresh (with forward-

secrecy) if and only if none of the following events occur:
1. a RevealSessionKey(Û , Û ′,ch) query occurs;
2. a RevealSessionKey(Û ′, Û ,ch) query occurs;
3. either of the following queries occur before the Test query:

(a) RevealPW(Û , Û ′,ch) or (b) RevealPW(Û ′, Û ,ch);
and Send(Û , (Û ′,ch), M) occurs for some string M.

We note that this definition of freshness allows the adversary considerable power in terms of
revealed passwords. In particular, the adversary could reveal every one-time password – past and
future – except the single password for the target session.

Adversary’s goals. The adversary’s goals are to break either the confidentiality of the session key or
the security of the mutual authentication.

For confidentiality, the goal of an adversary is to guess the bit b used in the Test query of a fresh
session: this corresponds to the ability of an adversary to distinguish the session key from a random
string of the same length. Let Succ1×ake

P (A) be the event that the adversary A makes a single Test

query to some fresh instance ΠÛ
(Û ′,ch)

that has accepted and A eventually outputs a bit b′, where

b′ = b and b is the randomly selected bit in the Test query. The 1×ake-advantage of A attacking P
is defined to be

Adv1×ake
P (A) =

�

�

�2Pr
�

Succ1×ake
P (A)

�

− 1
�

�

� . (1)

We can define a similar notion for mutual authentication. Let Succ1×ma
P (A) be the event that the

adversary A causes a participant instance ΠÛ
(Û ′,ch)

with partner id Û ′ and one-time password index

ch to terminate without a partnered instance, before either of the RevealPW queries in part 3 of
Definition 2. The 1×ma-advantage of A attacking P is defined to be Adv1×ma

P (A) = Pr
�

Succ1×ma
P (A)

�

.
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Definition 3 (Security) Let λ be a security parameter. A protocol P is a secure one-time-password-
authenticated key agreement protocol if, for all adversaries A running in time polynomial in λ and
making at most qse SendP queries, there exists a constant δ and a negligible ε(λ) such that

Adv1×ake
P (A)≤

δqse
|Passwords|

+ ε(λ) , (2)

and a similar bound applies for Adv1×ma
P (A).

This notion of security says that no polynomially bounded adversary can do negligibly better
than randomly guessing an unknown password in each online attempt and can gain no advantage by
doing an offline dictionary attack.

This bound is of the same form as bounds for the security of PAKE. One might expect that we
could do better in the one-time password setting, since passwords are not reused. However, the
adversary always has a password guessing strategy each time it participates in the protocol, leading
to the qse/|Passwords| factor. Hence, this bound is effectively the best possible, up to making δ or
ε(λ) smaller. The advantage of one-time password systems comes from their robustness in the face
of richer models of compromise.

Remark. This security definition protects users from authentication and confidentiality failures. It
offers no protection against denial of service attacks, especially attacks in which an attacker aims to
exhaust a user’s supply of one-time passwords. An adversary could keep a client and server “out of
sync” on which password to use, preventing a connection from being established. Unless there is
some additional form of server-to-client authentication – for example, the challenge being signed
by a server certificate, which is outside the scope of this work since it would require a public key
infrastructure – this appears to be unavoidable.

2.2 Verifier-based one-time passwords

In the verifier-based model, the server stores a verifier, which is a one-way transformation of the
client’s password that cannot be used to impersonate the user. This offers increased security against
server database compromise. The security of verifier-based PAKE protocols is defined by the extension
of the BPR model given by Gentry et al. [GMR05]. The main difference is that an instance can remain
fresh even if either the password or the verifier (but not both) is compromised. This necessitates
the introduction of a new query for revealing the verifier. Additionally, it allows for the separate
definitions of client-to-server and server-to-client authentication.

The model we described in Section 2.1 can be extended in the natural way to use verifier-based
one-time passwords by introducing a RevealV query to reveal one-time verifiers and adjusting the
freshness definition appropriately; the details appear in Appendix A.

3 A generic construction for one-time password protocols
We now describe a technique for building a one-time-PAKE protocol, 1(P), out of any PAKE protocol
P, and then show that the one-time-password protocol is at least as secure as the password protocol
out of which it is built. The basic idea is that a PAKE protocol in which passwords are used only once
is also a good one-time-PAKE protocol.

3.1 Construction of 1(P) from P
The construction proceeds as follows. For each client-server-index combination (Ĉ , Ŝ,ch) in the one-
time-password protocol, we will construct a new pair of users with compound names (Ĉ , Ŝ,ch) and
(Ŝ, Ĉ ,ch) in the password protocol, and pass the queries against the session in the one-time-password
protocol down to the new pair of users in the underlying password protocol. Since every PAKE
protocol should be secure even if each pair of users is used only once, this constructed one-time-PAKE
protocol should also be secure.

We now specify in detail the technique to construct a one-time-PAKE protocol 1(P) from a PAKE
protocol P. There are two phases: the registration phase, in which pairs of clients and servers
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establish passwords, and the login phase, in which pairs of clients and servers attempt to establish a
secure session.

Registration phase. The registration phase of the 1(P) protocol is specified in Figure 1 below. For
every client-server pair (Ĉ , Ŝ) ∈ Parties×Parties, and for each one-time-password index ch ∈ Indices,
initiate the registration phase of P with the users (Ĉ , Ŝ,ch) and (Ŝ, Ĉ ,ch), and set pwĈ ,Ŝ,ch in 1(P)
equal to the corresponding password in P.

Although one might be concerned about the time that it takes to complete the registration phase
if Indices is large, the registration phase of any one-time password protocol can not, in general, be
completed in less time asymptotically if truly one-time passwords are used. In other words, this is
effectively the same complexity as password establishment in currently deployed one-time password
schemes, and hence is quite practical. Moreover, the registration for each challenge can be run in
parallel to reduce the number of communication rounds.

Protocol 1(P) – Registration Phase
Client Ĉ Server Ŝ

for each ch ∈ Indices:

1. run registration phase of protocol P with users (Ĉ , Ŝ,ch) and (Ŝ, Ĉ ,ch)

2. pwĈ ,Ŝ,ch in 1(P)← pw(Ĉ ,Ŝ,ch),(Ŝ,Ĉ ,ch) in P

3. usedĈ (Ŝ,ch)← false usedŜ(Ĉ ,ch)← false
end for each

Figure 1: Protocol 1(P) – Registration Phase; must use a private, authenticated channel.

Login phase. The login phase of the 1(P) protocol is specified in Figure 2 below. Each party
Û maintains a set of tables usedÛ(Û ′,ch), where each entry in the table is either true or false and
indicates whether the one-time-password indexed by ch has been used by Û with Û ′.

To initiate the protocol, instance ΠĈ
(Ŝ,⊥) of user Ĉ sends a message (“hello”, Ĉ) to instance ΠŜ

(Ĉ ,⊥)
of party Ŝ. When a party Ŝ receives a message (“hello”, Ĉ), it picks a one-time-password index ch
from Indices such that usedŜ(Ĉ ,ch) = false. Then it sets usedŜ(Ĉ ,ch)← true and activates ΠŜ

(Ĉ ,ch)
.

Finally, it sends “hello” to instance ΠĈ
(Ŝ,ch)

of party Ĉ . It then waits to engage in a single instance

of protocol P acting as user (Ŝ, Ĉ ,ch) interacting with party (Ĉ , Ŝ,ch). When the corresponding
instantiation of protocol P accepts, the instance in 1(P) sets its session key to the session key in P
and then accepts. When it rejects in P, it rejects in 1(P); when it terminates in P, it terminates in
1(P) as well.

When instance ΠĈ
(Ŝ,ch)

of party Ĉ receives a message (“hello”), it checks to see if usedĈ(Ŝ,ch) =

true; if so, then it rejects; if not, then it sets usedĈ(Ŝ,ch)← true. It then initiates the login phase
of protocol P acting as user (Ĉ , Ŝ,ch) interacting with party (Ŝ, Ĉ ,ch). It follows protocol P until it
accepts or rejects. When the corresponding instantiation of protocol P accepts, the instance in 1(P)
sets its session key to the session key in P and then accepts. When it rejects in P, it rejects in 1(P);
when it terminates in P, it terminates in 1(P) as well.

It follows easily from inspection that, if P is correct, 1(P) is also correct.

3.2 Security of 1(P)
Theorem 1 Let P be a secure password-authenticated key exchange protocol. Then 1(P) is a secure
one-time-password-authenticated key exchange protocol.

Due to length restrictions, the security argument appears in Appendix B. The basic idea of the
argument is as follows. We will show that attacks against 1(P) correspond to attacks against P. We
construct a 1(P) simulator in which the adversary’s queries to 1(P) are translated into queries on a
P challenger as follows:
• Execute1(P)(Â, B̂,ch): Return the result of ExecuteP((Â, B̂,ch), 1, (B̂, Â,ch), 1).
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Protocol 1(P) – Login Phase
Client Ĉ Server Ŝ

1. “hello”,Ĉ
−−−−−→

2. pick ch ∈ Indices s.t.
usedŜ(Ĉ ,ch) = false

3. usedŜ(Ĉ ,ch)← true

4. ΠĈ
(Ŝ,ch)

“hello”←−−−−−
5. if (usedĈ (Ŝ,ch) = true) then reject
6. usedĈ (Ŝ,ch)← true

7. run protocol P with users (Ĉ , Ŝ,ch) and (Ŝ, Ĉ ,ch) and password pw(Ĉ ,Ŝ,ch),(Ŝ,Ĉ ,ch)

8. if P accepts then if P accepts then
8.a) sid1(P)← sidP ; pid← Ŝ sid1(P)← sidP ; pid← Ĉ
8.b) sk1(P)← skP sk1(P)← skP

8.c) accept in 1(P) accept in 1(P)
9. if P terminates then terminate if P terminates then terminate
10. if P rejects then reject if P rejects then reject

Figure 2: Protocol 1(P) – Login Phase; can use a public, unauthenticated channel.

• Send1(P)(Û , (Û ′,ch), M): If message M is for one of the two flows added by the 1(P) construc-
tion, then respond as indicated in Figure 2. If message M is for one of the flows from P, then
return the result of SendP((Û , Û ′,ch), 1, M).

• RevealSessionKey1(P)(Û , Û ′,ch): Return RevealSessionKeyP((Û , Û ′,ch), 1).
• RevealPW1(P)(Â, B̂,ch): Return RevealPWP((Â, B̂,ch), (B̂, Â,ch)).
• Test1(P)(Û , Û ′,ch): Return TestP((Û , Û ′,ch), 1).

Using this simulation, if an adversary could break 1(P), it could break P just as efficiently. But since
P is a secure PAKE protocol, no adversary should be able to attack P, and hence no adversary should
be able to attack 1(P). The argument is a straightforward simulation involving creating separate
user instances in P for each instance of 1(P) by constructing users in P with identities that are the
concatenation of the user name and one-time password index from 1(P), and assuring that fresh
instances in 1(P) correspond to fresh instances in P. We note that the security reduction is tight.

Example instantiation. Suppose we were to construct a one-time-password-authenticated key
exchange protocol using the 1(P) construction where the underlying password-authenticated key
exchange protocol is the (symmetric, non-verifier-based) protocol PAK [BMP00a]. The 1(PAK)
protocol is particularly interesting because, with an appropriate reordering of messages, it can be
made to fit inside the message flow of the TLS handshake protocol. This makes it suitable for use as
a new cipher suite in TLS. A full presentation of the 1(PAK) protocol is given in Appendix C.

In our example, we wish for an adversary to be able to break the one-time-password protocol with
probability at most 2−20, where the adversary runs in time at most 260, and can only make a limited
number (210) of Send queries. Assuming the hardness of solving the elliptic curve computational
Diffie-Hellman problem (using estimates in [BCC+08]), we can achieve this security level using
10-digit numerical passwords (Passwords = {0, . . . , 9}10) and a 348-bit elliptic curve group. (See
Appendix C.1 for the full analysis.)

3.3 Efficiency and practicality of 1(P)
Login phase and computational efficiency. During the login phase, the 1(P) construction provides no
loss of efficiency in terms of the number of expensive operations (such as group exponentiations)
or security level of P, since the reduction is tight. 1(P) does add two additional message flows to
the length of the protocol, but depending on the message flow of protocol P it may be possible to
combine some flows without affecting security.

One might think that designing a one-time-password protocol from scratch may lead to greater
efficiency, since some of the effort in designing PAKE protocols goes to preventing the transcript of
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one session leaking information about the password and in a one-time-password protocol we may not
have to worry as much about leaking information about passwords during a protocol run. However,
many PAKE protocols are already highly efficient in terms of number of operations. For example, the
Diffie-Hellman-based PAK [Mac02] protocol can be run with just 2 group exponentiations on each
side (plus a group inversion on the client side, which is inexpensive in many groups like elliptic curve
groups), which is very close to the operation count of the basic, unauthenticated Diffie-Hellman
protocol (2 group exponentiations for both parties). The main efficiency to be gained, then, would
be in improving the tightness in the security reduction to the underlying Diffie-Hellman problem so
as to allow smaller group sizes.

Registration phase. The registration phase of 1(P) obviously requires establishing many more
passwords than a single instance of P, but any one-time password scheme requires establishing
many more passwords than a long-term password scheme. The 1(P) registration phase calls the
registration phase of P many times. Depending on the PAKE protocol P, the registration phase can
be quite efficient: for example, in the PAK protocol [Mac02], the registration phase can be optimized
to consist of just one hash function evaluation.

Password storage. In practice it is important to consider how clients will store a list of one-time
passwords, especially if they wish to log in to a site while away from their normal computer. One
method is to provide a piece of paper with a list of one-time passwords; for example, the Swedish
bank Nordea provides its customers with a “scratch sheet” of 120 one-time passwords [Nor09].
Alternatively, one-time passwords could be delivered through an out-of-band channel such as an
SMS message to the user’s mobile phone (for example, [Mob]). Passwords can also be stored on or
generated by an electronic token device, for example the RSA SecurID [RSA09], or even in a smart
card built into credit cards [Pri08].

We can further reduce the complexity of the registration phase and password storage by using
pseudorandom or time-based one-time passwords, which we describe in the following sections.

4 Using pseudorandom passwords
To improve the efficiency of password registration and storage, it may be desirable to pseudorandomly
generate passwords instead of truly random ones. For example, users may be given a hardware token
[RSA09, Bli09] with a preprogrammed private seed which iteratively generates one-time passwords,
or the device may accept a challenge as an input and then output a response from a pseudorandom
function based on the seed and that challenge. We show that pseudorandomly generated passwords
can be safely used in one-time-PAKE protocols.

Suppose P is secure one-time-PAKE protocol. We construct a new protocol P̃ based on P that
uses pseudorandomly generated passwords as follows.

We modify the registration phase of P̃ as follows. For each (unordered) pair of users {Â, B̂} ∈
Parties× Parties, choose a random seed seedÂ,B̂ ∈R {0,1}λ, where λ is a security parameter. Let
F = {Fk} be a family of pseudorandom functions [GGM86]. For each one-time-password index
ch ∈ Indices, set pwÂ,B̂,ch = FseedÂ,B̂

(ch).
The login phase of P̃ is exactly as in P, except that the passwords chosen in the modified

registration phase above are used. For the purposes of the security model in Section 2.1, the
RevealPW queries work exactly as before and only reveal an individual password pwÂ,B̂,ch. No query
reveals seedÂ,B̂.2

The only difference between P̃ and P is that pseudorandom passwords are being used instead
of random passwords. It is then easy to see that any efficient adversary A that can defeat session
key security or mutual authentication in P̃ can be used to build either an adversary A1 that breaks

2We could add a further query, say RevealPWSeed(Â, B̂), that does reveal the value seedÂ,B̂ and then add an additional
constraint to the definitions of freshness and authentication so that an instance is not considered fresh if the relevant
RevealPWSeed query is called before the Test query. This enhanced model would make it clear that corruption of one
pair of users’ pseudorandom seed should not affect the security of another pair of users. It is not hard to see that this
construction would satisfy this enhanced security model, assuming independent random seeds.
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session key security or mutual authentication in P, or an algorithm A2 that acts as a polynomial-time
distinguisher for the pseudorandom function family F . Thus P̃ is secure if P is, and we see that
pseudorandomly generated one-time passwords can be safely used in any secure one-time-PAKE
protocol.

5 Using time-dependent pseudorandom passwords
A further refinement to the use of pseudorandomly generated passwords is to use passwords that
also depend on the current time. This allows the client and server to agree upon a challenge – the
current time – without any communication, while easily enforcing the one-time use of passwords.

For example, consider a hardware token for party Â interacting with party B̂ which has a
pseudorandom function FseedÂ,B̂

∈ F and an onboard clock. It generates one-time passwords as
follows. Let t be the hardware token’s current time. Treat t as the one-time password index ch, and
then compute

pwÂ,B̂,t = FseedÂ,B̂
(t) . (3)

User Â then participates in the one-time-PAKE protocol using pwÂ,B̂,t .
Whenever clocks are used by two parties, one must consider the issue of clock skew, in which the

two clocks may not be perfectly synchronized. For example, ordinary quartz clocks drift at a rate of
approximately 10−6 seconds per second, or about 1 second every 12 days.

One solution is to have a common network time server that both parties use for synchronization.
This is problematic for two reasons: (1) the network time server must be trusted (or at least dealt
with in the security model); (2) all of the parties participating must have a way of synchronizing
with the clock server; an inexpensive, credit-card-sized hardware token may not be connected to the
network, making synchronization difficult or impossible.

Another method for dealing with clock skew is to have the server accept multiple passwords from
a small window around the server’s current time (say, plus or minus 60 seconds). However, this is a
problem for PAKE protocols, as the server never receives the client’s password directly. Rather, each
party uses what it believes to be the password in the protocol, and at the end the two parties know
that the same password was used if and only if they arrive at the same session key. This prevents
the server from accepting multiple passwords as valid. (Traditional one-time password systems
often avoid this problem by having the client send the password itself to the server over an existing
encrypted but not mutually authenticated channel.)

A simpler alternative mechanism for dealing with clock skew is for one party (the initiator) to
just tell the other party (the responder) what time t it used in the protocol. If the time used by
the initiator is acceptable to the responder (say within plus or minus 60 seconds of the responder’s
clock) then the responder continues the protocol using the specified time. This provides a simple
mechanism for ensuring both sides use the same time-dependent password while accommodating
clock skew.

Adjusting the model. In order to accommodate this alternate mechanism in the security model
described in Section 2.1, the definition of freshness would need to be adapted (in part 3.(a) and 3.(b)
of Definition 2) so that a responder instance ΠÛ

(Û ′,t)
is fresh provided that no RevealPW(Û , Û ′, t) or

RevealPW(Û ′, Û , t) query was issued. This captures the notion that the authentication should be
secure as long as the currently valid password has not been revealed.

With this modified security definition, and assuming F is a secure family of pseudorandom
functions, one-time time-based passwords generated in equation (3) can be safely used in a secure
one-time-PAKE protocol as a result of the discussion about pseudorandom passwords in Section 4.

6 Analysis of the OPKeyX protocol
The OPKeyX protocol [ACP05a] is a PAKE protocol that uses a sequence of passwords derived via a
hash chain from a single seed. The protocol is a verifier-based protocol, meaning that the compromise
of the value stored on the server should not allow someone to impersonate the client. We note
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that [ACP05a] omits a complete analysis of OPKeyX: it gives a proof for a non-verifier-based PAKE
protocol in the BPR model but no proof that OPKeyX, a verifier-based hash-chain variant of the
protocol, is also secure.

The sequence of passwords in OPKeyX is as follows. Each client Ĉ picks, for each server Ŝ, a
seed password pw. Let Nmax be the maximum number of login sessions for the seed pw. During the
registration phase, the client gives the server its verifier VNmax

← f Nmax+1(pw), where f is a random
oracle [BR93] and f i denotes the i-fold application of f . The parties each maintain internal counters
n of the current login phase, starting from n= Nmax and decreasing to 1. During login phase with
internal counter equal to n, the client and server do an encrypted key exchange where the Diffie-
Hellman ephemeral public keys are encrypted using a value derived from the verifier Vn = f n+1(pw).
Then, the client encrypts f n(pw) under a value s derived from the shared Diffie-Hellman key (but
distinct from the session key sk) and sends it to the client. The server decrypts to obtain V ′, verifies
Vn = f (V ′), and sets Vn−1← V ′ and n← n− 1.

OPKeyX relies on the correct sequence of passwords being used. In the security model for
verifier-based one-time-PAKE in Appendix A, we allow the adversary to reveal one-time passwords in
any order. As a result, OPKeyX cannot be a secure verifier-based one-time-PAKE protocol in that
sense. For example, an adversary could reveal the password for session with counter i, which is
f i+1(pw), and then be able to derive the password for the earlier session with counter i+1 (recalling
that counters decrease as time passes), which is f i+2(pw) = f ( f i+1(pw)). To describe the security of
OPKeyX, we would need to further restrict our model so that a session is not fresh if the password
or verifier of a subsequent session has been revealed which, although weaker from a theoretical
perspective, still models a plausible practical scenario. The situation is even more complicated if
RevealSessionKey is deemed to reveal the value s (which encrypted the next verifier V ′ and is in
some sense a “session key”) in addition to sk, in which case no earlier s value for the target users can
have been revealed before the Test query.

7 Conclusions
One-time password systems are already being widely deployed by banks, governments, and corporate
virtual private networks (VPNs) to reduce the effects of password compromise. Bank customers
today are using sheets of paper with lists of one-time passwords. Online shoppers and gamers today
are using hardware one-time password generators. The money being spent on deploying one-time
passwords is wasted if these passwords are not being used safely and securely.

By using one-time passwords in one-time-PAKE protocols, as we have proposed in this paper, we
can be assured that one-time passwords are being used in a more secure way. We have presented
a model for the secure use of one-time passwords in PAKE protocols, taking into account the
idea that such protocols should be secure even if previous or future one-time passwords have
been compromised. We have given a generic technique for constructing secure one-time password
protocols. Our construction can be used with pseudorandomly generated one-time passwords or
time-based one-time passwords, providing greater efficiency in one-time password distribution.

An important open problem based on this work is the task of determining whether it is possible
to construct one-time password protocols that are more efficient than regular password protocols, as
discussed in Section 3.3.

As with all cryptographic protocols, an essential precondition to security is getting users to use the
protocol. If an adversary can trick a user into entering their password in a non-secure manner so
that the secure protocol is never used – a so-called chosen protocol attack – then the cryptographic
countermeasures are bypassed. For any PAKE protocol to succeed, user training and user interface
design will be very important.

Spyware remains a significant threat to password security. In the face of passive spyware, such as
a keystroke logger which collects information and occasionally relays it back to the attacker, both
traditional one-time password schemes and one-time-PAKE are useful since used one-time passwords
are useless to an attacker. If the spyware is active – it captures a one-time password, terminates
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the user’s connection, and immediately sends the password to the attacker – the captured password
may still be useful to an attacker, and it seems that neither traditional one-time password schemes
nor one-time-PAKE can do much unless time-dependent passwords are used with careful expiration
procedures.

An additional challenge is widespread deployment of such secure protocols. Passwords, as they
are used in HTTP and TLS on the Internet today, remain susceptible to phishing attacks. The huge
installed base of web browsers and web servers has significantly slowed efforts to deploy PAKE.
Our techniques, like PAKE, require some changes to TLS implementations. It may be possible to
implement a large portion of a new security protocol as a browser add-on (like a Firefox extension),
making deployment easier.

Our approach may see more immediate application in corporate virtual private network (VPN)
software. Many corporate VPNs use one-time passwords now, albeit in a less secure way than we
have proposed. Moreover, both endpoints – the user’s computer and the VPN server – are often
under control of the same organization and using software from the same vendor, making it easier to
deploy enhancements. An interesting avenue of future research is the integration of secure PAKE
and one-time-PAKE protocols into IPsec for use in corporate VPNs. Indeed, IKEv2 (one of the key
exchange protocols for IPsec) notes the need for password authentication: after showing how to
derive a shared key for authenticated Diffie-Hellman key exchange in IKEv2, the RFC goes on to say:

“... deriving the shared secret from a password is not secure. This construction is used
because it is anticipated that people will do it anyway” [Kau05, p. 30].

One-time-password-authenticated key exchange is one way in which one-time passwords can be
used more securely.
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A Verifier-based one-time passwords
In this section, we follow that approach and modify the security model of Section 2.1 to define the
security of a verifier-based one-time password-authenticated key exchange protocol.

Participants. We distinguish between two types of parties: Clients and Servers, with Parties =
Clients ∪̇ Servers. Each distinct client-server pair (Ĉ , Ŝ) ∈ Clients× Servers has a set of one-time
password-verifier pairs {(pwĈ ,Ŝ,ch,VĈ ,Ŝ,ch)} indexed by ch. Each of the one-time passwords pwĈ ,Ŝ,ch is
chosen uniformly at random from the set Passwords, and VĈ ,Ŝ,ch is the verifier for the corresponding
password, the derivation of which is specified by the registration phase of the protocol. The client
stores the one-time passwords and the server stores the one-time verifiers.

Queries allowed. The allowed queries are modified as follows. The RevealPW query is modified to
model the compromise of the client’s one-time password, and a new RevealV query is introduced to
model the comprise of the server’s one-time verifier.

• RevealPWP(Â, B̂,ch): If Â ∈ Clients and B̂ ∈ Servers, then it returns the one-time password
pwÛ ,Û ′,ch; otherwise, it returns an error.

• RevealVP(Â, B̂,ch): If Â∈ Clients and B̂ ∈ Servers, then it returns the one-time verifier VÂ,B̂,ch;
otherwise, it returns an error.

Freshness. The notion of freshness for verifier-based one-time-password-authenticated key exchange
protocol is adapted as follows.

Definition 4 (Freshness, verifier-based) In a verifier-based one-time-password authenticated pro-
tocol, an instance ΠÛ

(Û ′,ch)
is fresh (with forward-secrecy) if and only if none of the following events

occur:
1. a RevealSessionKey(Û , Û ′,ch) query occurs;
2. a RevealSessionKey(Û ′, Û ,ch) query occurs;
3. if Û ∈ Clients, either of the following queries occur before the Test query:

(a) RevealPW(Û , Û ′,ch), or
(b) RevealV(Û , Û ′,ch),

and Send(Û , (Û ′,ch), M) occurs for some string M.
4. if Û ∈ Servers, RevealPW(Û ′, Û ,ch) occurs before the Test query, and Send(Û , (Û ′,ch), M)

occurs for some string M.

Adversary’s goals. The adversary’s goal related to confidentiality is the same, using Adv1×ake
P (A).

The adversary’s goals related to authentication are modified as follows. We introduce separate
notions of client-to-server, server-to-client, and mutual authentication. Let Succ1×c2s

P (A) be the
event that the adversary A causes a server instance ΠŜ

(Ĉ ,ch)
with partner id Ĉ to terminate without

a partnered instance, before the RevealPW or RevealV queries in part 3 of Definition 4. Let
Succ1×s2c

P (A) be the event that the adversary A causes a client instance ΠĈ
(Ŝ,ch)

with partner id Ŝ
to terminate without a partnered instance, before the RevealPW query in part 4 of Definition 4.
Finally, let Succ1×ma

P (A) = Succ1×c2s
P (A) ∨ Succ1×s2c

P (A). We define the corresponding advantages
Adv1×c2s

P (A), Adv1×s2c
P (A), and Adv1×ma

P (A) analogously to Section 2.1.
In order to accommodate security in the case of the verifier being compromised, we employ the

random oracle model [BR93] to achieve a definition similar to the definition of verifier-based PAKE
by Gentry, MacKenzie, and Ramzan [GMR05, Theorem 5.1].
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Definition 5 (Security, verifier-based) Let λ be a security parameter. A protocol P is a secure verifier-
based one-time-password-authenticated key agreement protocol in the random oracle model if, for all
adversaries A running in time polynomial in λ and making at most qse SendP queries and at most qro
random oracle queries, there exists a constants δ1 and δ2 and a negligible ε(λ) such that

Adv1×ake
P (A)≤

δ1qse(1− bRV) +δ2qrobRV
|Passwords|

+ ε(λ) , (4)

and a similar bound applies for Adv1×ma
P (A), where bRV = 1 if a RevealV query occurs and bRV = 0

otherwise.

The construction of 1(P) can be modified in the obvious way to support verifier-based protocols
as well. Using an argument similar to the one for Theorem 1, we can easily show the following
result:

Theorem 2 Let P be a secure verifier-based password-authenticated key exchange protocol. Then 1(P),
modified to support verifier-based protocols, is a secure verifier-based one-time-password-authenticated
key exchange protocol.

B Security argument for 1(P) construction
The basic idea of the argument is as follows. We will show that attacks against 1(P) correspond to
attacks against P. As a result, if an adversary could break 1(P), it could break P. Thus, an adversary
could use the 1(P) construction, which is efficient, as part of its algorithm for breaking P. But
since P is a secure password-authenticated key exchange protocol, no adversary should be able to
attack P, and hence no adversary should be able to attack 1(P) either. The security argument is a
straightforward simulation involving creating separate user instances in P for each instance of 1(P).
PROOF. In order to show that 1(P) is a secure one-time-password-authenticated key exchange
protocol, we need to show that it provides secure key exchange and secure mutual authentication.

First, we construct a 1(P) simulator in which the adversary’s queries to 1(P) are translated into
queries on a P challenger as follows:
• Execute1(P)(Â, B̂,ch): Return the result of ExecuteP((Â, B̂,ch), 1, (B̂, Â,ch), 1).
• Send1(P)(Û , (Û ′,ch), M): If message M is for one of the two flows added by the 1(P) construc-

tion, then respond as indicated in Figure 2. If message M is for one of the flows from P, then
return the result of SendP((Û , Û ′,ch), 1, M).

• RevealSessionKey1(P)(Û , Û ′,ch): Return RevealSessionKeyP((Û , Û ′,ch), 1).
• RevealPW1(P)(Â, B̂,ch): Return RevealPWP((Â, B̂,ch), (B̂, Â,ch)).
• Test1(P)(Û , Û ′,ch): Return TestP((Û , Û ′,ch), 1).
Next, we show that a fresh session in the 1(P) simulator corresponds to a fresh session in the P

challenger. Then we show that a session-key distinguisher for a fresh session of 1(P) is a session-key
distinguisher for a fresh session of P, and hence 1(P) provides secure key agreement.

Suppose Π(Û ,Û ′,ch)
1 with partner id (Û ′, Û ,ch) is not a fresh instance in the P challenger. We will

show that ΠÛ
(Û ′,ch)

is not a fresh instance in the 1(P) simulator.

If Π(Û ,Û ′,ch)
1 with partner id (Û ′, Û ,ch) is not a fresh instance in the P challenger, then one of the

following must have occurred:
• RevealSessionKeyP((Û , Û ′,ch), 1) occurred. A RevealSessionKey1(P)(Û , Û ′,ch) query must

have occurred, since no other query in 1(P) leads to this query in P. Hence, ΠÛ
(Û ′,ch)

is not

fresh in 1(P).
• RevealSessionKeyP((Û ′, Û ,ch), 1) occurred, whereΠ(Û

′,Û ,ch)
1 is the partner instance ofΠ(Û ,Û ′ch)

1
in P. In this case, a RevealSessionKey1(P)(Û ′, Û ,ch) query must have occurred, since no other

query in 1(P) leads to this query in P. Hence, ΠÛ
(Û ′,ch)

is not fresh in 1(P).
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• RevealPWP((Û ,ch), (Û ′,ch)) occurred before the TestP query and SendP((Û ,ch), 1, M) oc-
curred for some message M . In this case, RevealPW1(P)(Û , Û ′,ch) must have occurred in 1(P)
before the Test1(P) query and Send1(P)(Û , (Û ′,ch), M) must have occurred, since no other
sequence of queries in 1(P) leads to this sequence of queries in P. Hence, ΠÛ

(Û ′,ch)
is not fresh

in 1(P).
Thus, Π(Û ,Û ′,ch)

1 with partner id (Û ′, Û ,ch) is a fresh instance in P.
Having shown that fresh sessions in the 1(P) simulator are also fresh in the P chappenger, we

now show that breaking session key security of the 1(P) simulator leads to breaking session key
security of the P challenger.

We first note that, since each one-time password pwĈ ,Ŝ,ch for 1(P) was chosen according to the
distribution Passwords for P, the distribution of passwords with which P is initialized satisfied the
protocol requirements of P.

By the argument above, every fresh session in 1(P) corresponds to a fresh session in P. Since the
session key in 1(P) is equal to the session key in P and since the output of Test1(P) is equal to the
output of TestP , a session key distinguisher for fresh sessions of 1(P) will also distinguish session
keys for P. Thus, an adversary’s 1×ake-advantage in 1(P) cannot be better than its ake-advantage
in P:

Adv1×ake
1(P) (t, qse, qex, qpw, qro)≤ Advake

P (t, qse, qex, qpw, qro) . (5)

Finally, we show that the ability of an adversary to break authentication in 1(P) is related to
its ability to break authentication in P, in a manner analogous to the discussion above for key
agreement security. Suppose an instance of 1(P) terminates without a partnered instance, before any
of the queries in part 3 of Definition 2. Instances in 1(P) terminate if and only if the corresponding
instance in P has terminated. Moreover, none of the prohibited queries in the definition of mutual
authentication for password-authenticated key exchange could have occurred since otherwise one of
the prohibited queries for mutual authentication of one-time-password-authenticated key exchange
must have occurred. Hence, mutual authentication must have been broken for P as well. Thus, an
adversary’s 1×ma-advantage in 1(P) cannot be better than its ma-advantage in P:

Adv1×ma
1(P) (t, qse, qex, qpw, qro)≤ Advma

P (t, qse, qex, qpw, qro) . (6)

Thus 1(P) is a secure one-time-PAKE protocol if P is a secure PAKE protocol. �

We note that the converse does not necessarily hold, namely, that it is not necessarily the case
that, if 1(P) is secure, so is P. For example, an attacker trying to attack P may do so by causing the
users in P to run multiple sessions. If the adversary causes a pair of users (Ĉ , Ŝ,ch) and (Ŝ, Ĉ ,ch) to
run multiple sessions in P, then there is no way of mapping this to an allowable instance of 1(P),
and we cannot translate the attack on P into an attack on 1(P).

C 1(PAK): a one-time-password-authenticated key exchange protocol
In this section, we present the protocol 1(PAK), an adaptation of the PAK protocol to use one-time
passwords using the 1(P) construction of Section 3.1. In the presentation, the notation has been
simplified from the 1(P) construction where appropriate (for example, we avoid the repetitive
subscripting pw(Ĉ ,Ŝ,ch),(Ŝ,Ĉ ,ch) and simplify to the unambiguous pwĈ ,Ŝ,ch). The PAK protocol was
introduced by Boyko, MacKenzie, and Patel [BMP00a]. It is a symmetric, or non-verifier-based,
protocol. The original paper [BMP00a] gave a proof that PAK was secure in the simulation model
of Shoup [Sho99b] and was later shown to be secure in the BPR model by MacKenzie [Mac02].

Let G be a finite cyclic group of order q and let g be a generator of G. Let Acceptable : G →
{true, false} such that Acceptable(z) = true if and only if z ∈ G, where G is a specified abelian group
which has G as a subgroup. H1 is a full-domain random hash function returning elements of G; H2,
H3, and H4 are random hash functions returning suitably large bit strings.
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The user registration phase of the 1(PAK) protocol is given in Figure 3. For each one-time
password index ch ∈ Indices, the server Ŝ uniformly at random picks a password pwĈ ,Ŝ,ch ∈R
Passwords and stores a related value τ−1. Then, using a private, authenticated channel, the server
provides all the one-time passwords to the client Ĉ who stores them. Alternatively, the set of one-time
passwords for each client-server pair could be selected by each client and supplied to the server over
a secure channel; the end result would be the same.

Protocol 1(PAK) – Registration Phase
Client Ĉ Server Ŝ

for each ch ∈ Indices:
1. choose pwĈ ,Ŝ,ch ∈R Passwords
2. τ−1← (H1(Ĉ , Ŝ,pwĈ ,Ŝ,ch))

−1

3. store pwŜ[Ĉ ,ch]← τ−1

end for each
4. PĈ ,Ŝ ← {(ch,pwĈ ,Ŝ,ch) : ch ∈ Indices}

5.
PĈ ,Ŝ

←−−−−−
6. store PĈ ,Ŝ

7. usedĈ (Ŝ,ch)← false for all ch ∈ Indices usedŜ(Ĉ ,ch)← false for all ch ∈ Indices

Figure 3: Protocol 1(PAK) – Registration Phase. This phase must use a private, authenticated
channel.

The login phase of the 1(PAK) protocol is given in Figure 4. In this phase, the client sends a
“hello” message to the server to obtain the one-time password index ch and, provided that one-time
password index is unused. follows the user login phase of the PAK protocol, which includes mutual
authentication based on the shared password pwĈ ,Ŝ,ch and the computation of a shared session key
sk based on the Diffie-Hellman shared secret.

Mackenzie [Mac02, Theorem 6.9] shows that PAK is a secure password-authenticated key
exchange protocol in the BPR model, assuming the hardness of the computational Diffie-Hellman
problem and using the random oracle model. Combining that result with our Theorem 1, we have
that 1(PAK) is a secure one-time-password-authenticated key exchange protocol:

Theorem 3 Let G be a finite cyclic group generated by g and let texp denote the running time of
exponentiation in G. Assume passwords are uniformly distributed among the set Passwords. Let A be
an adversary that runs in time t and makes at most qse and qex queries of type Send and Execute,
respectively, and at most qro queries to the random oracles. Then, for t ′ = t + (4q2

ro+ qse+ 2qex)texp,

Adv1×ake
1(PAK)(A)≤

qse
|Passwords|

+ ε , (7)

where

ε= 2qseAdv
CDH
G,g

�

t ′, q2
ro

�

+ 2
(qse+ qex)(qro+ qse+ qex)

|G|
(8)

and AdvCDH
G,g (t,`) is the advantage an adversary running in time t and outputting a list of ` items has

in solving the (list) computational Diffie-Hellman (CDH) problem. Moreover, the same bound applies for
Adv1×ma

1(PAK)(A).

C.1 Parameter sizes for example instantiation

As a consequence of Theorem 3, we can pick a desired security level and under a suitable assumption
on the difficulty of solving CDH, choose a set of parameters that achieve that security level.

Suppose we wish for an adversary running in time 260 to have an ake advantage of at most 2−20

against 1(PAK).
To give an example instantiation, we have to pick appropriate values for the various parameters

in the statement of the theorem. We choose qse = 210, qex = 220, qro = 240, t = 280, and texp = 220.
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Protocol 1(PAK) – Login Phase
Client Ĉ Server Ŝ

1. input username Ĉ

2. “hello”,Ĉ
−−−−−→

3. pick ch ∈ Indices s.t. usedŜ(Ĉ ,ch) = false
4. usedŜ(Ĉ ,ch)← true

5. “hello”,ch
←−−−−−

6. if (usedĈ (Ŝ,ch) = true) then reject
7. usedĈ (Ŝ,ch)← true
8. lookup pwĈ ,Ŝ,ch

9. τ= H1(Ĉ , Ŝ,pwĈ ,Ŝ,ch)
10. x ∈R Zq

11. X ← g x

12. m← X ·τ

13.
Ĉ ,m
−→

14. if ¬Acceptable(m) then reject
15. y ∈R Zq

16. Y ← g y

17. lookup τ−1← pwŜ[Ĉ ,ch]
18. X ← m ·τ−1

19. σ← X y

20. sid← (Ĉ , Ŝ,ch, m, Y ); pid← Ĉ
21. sk← H2(sid,σ,τ−1); accept
22. M1← H3(sid,σ,τ−1)

23.
Y,M1←−

24. σ← Y x

25. compute τ−1

26. sid← (Ĉ , Ŝ,ch, m, Y ); pid← Ŝ
27. sk← H2(sid,σ,τ−1); accept
28. if (M1 6= H3(sid,σ,τ−1)) then reject
29. M2← H4(sid,σ,τ−1)

30.
M2−→

31. if (M2 6= H4(sid,σ,τ−1)) then reject

Figure 4: Protocol 1(PAK) – Login Phase. This phase can use a public, unauthenticated channel.

We need qse
|Passwords| ≤ 2−21. Suppose each one-time password is comprised solely of numerical

characters 0-9. We need |Passwords| ≥ 231 which can be achieved by using uniformly distributed 10
digit numerical passwords (since 1010 ≈ 233.2).

We also need ε≤ 2−21. Of the two terms in expression (8), the latter is dominated by the former.
Noting that t ′ = 282, we require that 211AdvCDH

G,g (2
82, 260)≤ 2−21. Assuming that the best technique

to solve CDH is to solve the Discrete Logarithm problem and that the best method of doing so is as
described in the detailed analysis found in an ECRYPT report [BCC+08, §6.1], we need an elliptic
curve group of size q ≥ 22(11+21+82+60) = 2348.
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